A parametric empirical Bayesian framework for the EEG/MEG inverse problem: generative models for multi-subject and multi-modal integration

From Brede Wiki
Jump to: navigation, search
Paper (help)
A parametric empirical Bayesian framework for the EEG/MEG inverse problem: generative models for multi-subject and multi-modal integration
Authors: Richard N. A. Henson, Daniel G. Wakeman, Vladimir Litvak, Karl J. Friston
Citation: Frontiers in Human Neuroscience 5 : 76. 2011
Database(s): PubMed (PMID/21904527)
DOI: 10.3389/fnhum.2011.00076.
Link(s):
Search
Web: Bing Google Yahoo!Google PDF
Article: BASE Google Scholar PubMed
Restricted: DTU Digital Library
Other: NIF
Services
Format: BibTeX Template from PMID
Extract:

A parametric empirical Bayesian framework for the EEG/MEG inverse problem: generative models for multi-subject and multi-modal integration

The data is used in the DecMeg2014 Kaggle competition.

Personal tools