WOROI: 89 - Dorsolateral prefrontal cortex
Bib -> Asymmetry | Author | ICA | NMF | Novelty | Statistics | SVD | Title | WOBIB ]
Roi -> Alphabetic | Hammers | Tzourio-Mazoyer | Svarer | Top | Functional areas | Brodmann areas ]
[ Brede Database ]

WOROI: 89 - Dorsolateral prefrontal cortex

Abbreviation: DLPFC

External databases


Lateral prefrontal cortex
  Left dorsolateral prefrontal cortex
Right dorsolateral prefrontal cortex
Superior frontal gyrus, dorsolateral

Talairach coordinates

  x     y     z   Lobar anatomy WOBIB WOEXP
53 22 24 Dorsolateral prefrontal cortex 24 77
34 37 37 Right middle frontal gyrus, dorsolateral prefrontal cortex 51 171
42 30 32 Right dorsolateral prefrontal cortex 68 211
35 42 15 Right dorsolateral prefrontal cortex 71 223
38 36 20 Right dorsolateral prefrontal cortex 82 256
22 56 -4 Right dorsolateral prefrontal cortex 96 301
-20 44 -8 Left dorsolateral prefrontal cortex 96 301
-32 31 15 Dorsolateral prefrontal cortex, left 98 305
46 31 15 Dorsolateral prefrontal cortex, right 98 309
24 38 24 Right dorsolateral prefrontal cortex 125 387
26 34 22 Right dorsolateral prefrontal cortex 125 388
-34 45 16 Left dorsolateral prefrontal cortex 179 562
39 37 22 Right dorsolateral prefrontal cortex 179 562
44 43 13 Right dorsolateral prefrontal cortex 184 580


  x     y     z   Description
-29 40 8 Mean coordinate in left hemisphere
37 37 20 Mean coordinate in right hemisphere
35 38 17 Mean coordinate with ignored left/right
20 22 -8 Minimum coordinate with ignored left/right
53 56 37 Maximum coordinate with ignored left/right
10 8 12 Standard deviation with ignored left/right
corner cube of WOROI: 89 - Dorsolateral prefrontal cortex

Text contexts

Functional MRI (fMRI) was used to examine human brain activity within the dorsolateral prefrontal cortex during a sensorimotor task that had been proposed to require selection between several responses, a cognitive concept termed "willed action" in a positron emission tomography (PET) study by Frith et alF. Hyder; E. A. Phelps; C. J. Wiggins; K. S. Labar; A. M. Blamire; R. G. Shulman. "Willed action": a functional MRI study of the human prefrontal cortex during a sensorimotor task. Proc Natl Acad Sci U S A 94(13):6989-6994, 1997. PMID: 9192679. WOBIB: 6.
Awareness of visual verbal stimuli differentially activated medial parietal association cortex (precuneus), which is a polymodal sensory cortex, and dorsolateral prefrontal cortex, which is thought to be primarily executiveTroels W. Kjaer; M. Nowak; K. W. Kjaer; A. R. Lou; H. C. Lou. Precuneus-prefrontal activity during awareness of visual verbal stimuli. Consciousness and cognition 10(3):356-365, 2001. PMID: 11697869. DOI: 10.1006/ccog.2001.0509. WOBIB: 21.
In addition to the temporal lobe activations, there were activation tendencies in the left inferior frontal lobe, right dorsolateral prefrontal cortex, left occipital lobe, and cerebellumK. Hugdahl; K. Bronnick; S. Kyllingsbaek; I. Law; Anders Gade; Olaf B. Paulson. Brain activation during dichotic presentations of consonant-vowel and musical instrument stimuli: a 15O-PET study. Neuropsychologia 37(4):431-40, 1999. PMID: 10215090. WOBIB: 26.
Self-generated actions produced activity in a number of motor and premotor areas, including dorsolateral prefrontal cortexS. J. Blakemore; G. Rees; C. D. Frith. How do we predict the consequences of our actions? A functional imaging study. Neuropsychologia 36(6):521-9, 1998. PMID: 9705062. WOBIB: 82.
Regions more active in retrieval than encoding included bilateral inferior parietal cortex, bilateral precuneus, right frontal polar cortex, right dorsolateral prefrontal cortex, and right inferior frontal/insular cortexK. B. McDermott; J. G. Ojemann; Steven E. Petersen; J. M. Ollinger; A. Z. Snyder; E. Akbudak; T. E. Conturo; Marcus E. Raichle. Direct comparison of episodic encoding and retrieval of words: an event-related fMRI study. Memory 7(5-6):661-78, 1999. PMID: 10659091. WOBIB: 106.
The right dorsolateral prefrontal cortex demonstrated a significant correlation between rCBF and duration of key-press, possibly reflecting processes over-riding fatigueC. Dettmers; R. N. Lemon; K. M. Stephan; G. R. Fink; Richard S. J. Frackowiak. Cerebral activation during the exertion of sustained static force in man. NeuroReport 7(13):2103-10, 1996. PMID: 8930968. WOBIB: 108.
Our grouped and individual data analyses showed reliable patterns of activation in dorsolateral prefrontal cortex and posterior parietal cortex during performance of the working memory task across all four sitesB. J. Casey; Jonathan D. Cohen; K. O'Craven; Richard J. Davidson; W. Irwin; C. A. Nelson; D. C. Noll; X. Hu; M. J. Lowe; B. R. Rosen; C. L. Truwitt; P. A. Turski. Reproducibility of fMRI results across four institutions using a spatial working memory task. NeuroImage 8(3):249-261, 1998. PMID: 9758739. FMRIDCID: . WOBIB: 116.
A parametric haemodynamic response model (or regression analysis) confirmed a task-difficulty-dependent increase of BOLD and rCBF for the cerebellum and the left dorsolateral prefrontal cortexUlrich Schall; Patrick Johnston; Jim Lagopoulos; Markus Juptner; Walter Jentzen; Renate Thienel; Alexandra Dittmann-Balcar; Stefan Bender; Philip B. Ward. Functional brain maps of Tower of London performance: a positron emission tomography and functional magnetic resonance imaging study. NeuroImage 20(2):1154-61, 2003. PMID: 14568484. DOI: 10.1016/S1053-8119(03)00338-0. FMRIDCID: . WOBIB: 144.
Verbal Fluency activated the left inferior frontal cortex and the left dorsolateral prefrontal cortex, the supplementary motor cortex, the anterior cingulate cortex and the cerebellumBarbara Ravnkilde; Poul Videbech; Raben Rosenberg; Albert Gjedde; Anders Gade. Putative Tests of Frontal Lobe Function: A PET-Study of Brain Activation During Stroop's Test and Verbal Fluency. Journal of Clinical and Experimental Neuropsychology 24(4):534-547, 2002. PMID: 12187466. DOI: 10.1076/jcen.24.4.534.1033. FMRIDCID: . WOBIB: 176.
Unfair offers elicited activity in brain areas related to both emotion (anterior insula) and cognition (dorsolateral prefrontal cortex)Alan G. Sanfey; James K. Rilling; Jessica A. Aronson; Leigh E. Nystrom; Jonathan D. Cohen. The Neural Basis of Economic decision-Making in the Ultimatum Game. Science 300(5626):1755-1758, 2003. PMID: 12805551. DOI: 10.1126/science.1082976. FMRIDCID: . WOBIB: 179.
Duringimmediate pointingthere was additional activation of left inferior parietal lobule close to the intraparietal sulcus, and when compared withpointing to the previous,dorsolateral prefrontal cortex bilaterallyF. Lacquaniti; Daniela Perani; E. Guigon; V. Bettinardi; M. Carrozzo; F. Grassi; Yves Rossetti; F. Fazio. Visuomotor Transformations for Reaching to Memorized Targets: A PET study. NeuroImage 5(2):129-146, 1997. PMID: 9345543. DOI: 10.1006.nimg.1996.0254. FMRIDCID: . WOBIB: 182.

Text count

Bib -> Asymmetry | Author | ICA | NMF | Novelty | Statistics | SVD | Title | WOBIB ]
Roi -> Alphabetic | Hammers | Tzourio-Mazoyer | Svarer | Top | Functional areas | Brodmann areas ]
[ Brede Database ]
Automatically constructed by Brede Toolbox through brede_roi_roi2html, 2006-10-05T15:39:29