WOROI: 350 - Motor area
 
Bib -> Asymmetry | Author | ICA | NMF | Novelty | Statistics | SVD | Title | WOBIB ]
 
 
Roi -> Alphabetic | Hammers | Tzourio-Mazoyer | Svarer | Top | Functional areas | Brodmann areas ]
 
 
[ Brede Database ]
 


WOROI: 350 - Motor area

General motor associated areas


External databases

Taxonomy

ParentsSiblingsChildren
Functional area
  Supplementary motor area
Motor cortex
Primary motor cortex
Nonprimary motor area
Premotor cortex
Cingulate motor area
Pre-supplementary motor area

Talairach coordinates

  x     y     z   Functional area WOBIB WOEXP
42 -32 44 Sensory motor area 16 47
-40 -30 48 Sensory motor area 16 48
-26 -7 57 Left lateral premotor area 23 72
0 -10 71 Supplementary motor area 31 103
-18 3 55 Left supplementary motor area 40 134
-2 3 47 Supplementary motor area 43 144
-18 -1 63 Premotor area 43 144
-2 5 47 Supplementary motor area 43 145
-6 -4 67 Supplementary motor area 43 145
-16 -1 63 Premotor area 43 145
-39 -27 41 Left primary sensorimotor area 48 153
12 -19 45 Right primary sensorimotor cortex, supplementary motor area 48 154
-10 14 52 pre-supplementary motor area 49 160
-3 -12 58 Supplementary motor area 72 225
-9 -12 58 Supplementary motor area 72 227
-4 -8 48 Contralateral supplementary motor area 75 231
2 2 48 Supplementary motor area 82 256
-46 -4 12 Left primary motor cortex, supplementary motor area 84 268
-36 -24 52 Left primary motor area 84 270
-8 -2 48 Supplementary motor area 84 270
-7 -21 43 Left premotor area 99 310
2 0 52 Right supplementary motor area 101 314
8 -12 64 Right dorsal posterior supplementary motor area 108 337
8 -12 60 Right dorsal posterior supplementary motor area 108 337
-8 -18 56 Left dorsal posterior supplementary motor area 108 337
8 -12 56 Right dorsal posterior supplementary motor area 108 337
-4 -16 52 left ventral posterior supplementary motor area 108 337
-6 -20 48 Left ventral posterior supplementary motor area 108 337
-2 8 57 Supplementary motor area proper, pre-supplementary motor area 111 342
-2 20 46 Medial supplementary motor area 111 343
1 -4 54 Inferior supplementary motor area 117 362
5 -6 66 Superior supplementary motor area 117 362
5 -19 47 Supplementary motor area 117 364
51 15 34 Supplementary motor area 128 393
4 10 51 Supplementary motor area 129 395
4 10 51 Supplementary motor area 129 396
7 13 62 Pre-supplemental motor area 132 406
7 13 62 Pre-supplementary motor area 132 407
7 13 62 Pre-supplementary motor area 132 408
-40 0 30 Left primary motor area (face) 137 424
-8 4 41 Left supplementary motor area/cingulate motor area 148 456
-2 4 40 Inferior supplementary motor area 151 464
0 -4 52 Supplementary motor area 151 465
6 -14 56 Supplementary motor area 151 466
-10 1 57 Supplementary motor area 175 534
-12 -8 44 Left supplementary motor area 182 574
-6 -14 52 Left supplementary motor area 182 575
0 14 51 Premotor area 184 580
4 31 35 Supplementary motor area 184 580

Summary

  x     y     z   Description
-14 -6 49 Mean coordinate in left hemisphere
10 -1 53 Mean coordinate in right hemisphere
12 -4 51 Mean coordinate with ignored left/right
0 -32 12 Minimum coordinate with ignored left/right
51 31 71 Maximum coordinate with ignored left/right
14 14 10 Standard deviation with ignored left/right
corner cube of WOROI: 350 - Motor area

Text contexts

We used functional magnetic resonance imaging to examine the representation pattern for repetitive voluntary finger movements in the primary motor cortex (M1) and the supplementary motor area (SMA) of humansI. Indovina; J. N. Sanes. On somatotopic representation centers for finger movements in human primary motor cortex and supplementary motor area. NeuroImage 13(6 Pt 1):1027-34, 2001. PMID: 11352608. DOI: 10.1006/nimg.2001.0776. WOBIB: 11.
Before regional anesthesia, handgrip caused increased activation in the contralateral sensory motor area, the supplementary motor area, and the ipsilateral cerebellumM. Nowak; K. S. Olsen; I. Law; Søren Holm; O. B. Paulson; N. H. Secher. Command-related distribution of regional cerebral blood flow during attempted handgrip. Journal of Applied Physiology 86(3):819-824, 1999. PMID: 10066691. WOBIB: 16.
This reaction time effect was accompanied by increases in activity in four regions: the right ventrolateral prefrontal cortex, the supplementary motor area, the left superior parietal lobe, and the left anterior parietal cortexE. Hazeltine; Russell Poldrack; John D. E. Gabrieli. Neural activation during response competition. Journal of Cognitive Neuroscience 12(Supplement 2):118-29, 2000. PMID: 11506652. DOI: 10.1162/089892900563984. FMRIDCID: 2-2000-11173. WOBIB: 40.
The pattern of activation during visually guided movements was consistent with the flow of information from striate and extrastriate visual areas, to the posterior parietal complex, and then to frontal motor areasJ. M. Ellermann; J. D. Siegal; J. P. Strupp; T. J. Ebner; K. Ugurbil. Activation of visuomotor systems during visually guided movements: a functional MRI study. Journal of Magnetic Resonance 131(2):272-85, 1998. PMID: 9571103. WOBIB: 45.
This set of activations for smooth pursuit parallels the network of oculomotor areas characterized in nonhuman primates and complements recent studies showing that common cortical networks subserve oculomotor functions and spatial attention in humansR. A. Berman; C. L. Colby; C. R. Genovese; J. T. Voyvodic; B. Luna; K. R. Thulborn; J. A. Sweeney. Cortical networks subserving pursuit and saccadic eye movements in humans: an FMRI study. Human Brain Mapping 8(4):209-25, 1999. PMID: 10619415. WOBIB: 46.
The war-related condition, as compared to the neutral, increased rCBF in the right sensorimotor areas (Brodmann areas 4/6), extending into the primary sensory cortex (areas 1/2/3), and the cerebellar vermisAnna Pissiota; Orjan Frans; Manuel Fernandez; Lars von Knorring; Hakan Fischer; Mats Fredrikson. Neurofunctional correlates of posttraumatic stress disorder: a PET symptom provocation study. European Archives of Psychiatry and Clinical Neuroscience 252(2):68-75, 2002. PMID: 12111339. DOI: 10.1007/s004060200014. WOBIB: 66.
In the 46 degrees C experiment, positive signal changes were found in the frontal gyri, anterior and posterior cingulate gyrus, thalamus, motor cortex, somatosensory cortex (SI and SII), supplementary motor area, insula, and cerebellumL. R. Becerra; H. C. Breiter; M. Stojanovic; S. Fishman; A. Edwards; A. R. Comite; R. G. Gonzalez; D. Borsook. Human brain activation under controlled thermal stimulation and habituation to noxious heat: an fMRI study. Magnetic Resonance in Medicine 41(5):1044-57, 1999. PMID: 10332889. WOBIB: 72.
Self-generated actions produced activity in a number of motor and premotor areas, including dorsolateral prefrontal cortexS. J. Blakemore; G. Rees; C. D. Frith. How do we predict the consequences of our actions? A functional imaging study. Neuropsychologia 36(6):521-9, 1998. PMID: 9705062. WOBIB: 82.
To clarify the somesthetic functions of the supplementary motor area (SMA), we recorded the cortical potentials following the median nerve electric stimulation directly from the SMA and investigated the modulation caused by voluntary movements in two patients with intractable SMA seizuresT. Mima; A. Ikeda; S. Yazawa; T. Kunieda; T. Nagamine; W. Taki; H. Shibasaki. Somesthetic function of supplementary motor area during voluntary movements. NeuroReport 10(9):1859-62, 1999. PMID: 10501521. WOBIB: 84.
The present finding is in strong contrast with the attenuation (gating) of the response at the primary sensorimotor area (SM1) and suggests that the voluntary movements differently modulate the somatosensory functions of SMA and SM1T. Mima; A. Ikeda; S. Yazawa; T. Kunieda; T. Nagamine; W. Taki; H. Shibasaki. Somesthetic function of supplementary motor area during voluntary movements. NeuroReport 10(9):1859-62, 1999. PMID: 10501521. WOBIB: 84.
It was found that pain increased rCBF in the anterior cingulate, ipsilateral thalamus, prefrontal cortex, and contralateral supplementary motor areaL. J. Adler; F. E. Gyulai; D. J. Diehl; M. A. Mintun; P. M. Winter; L. L. Firestone. Regional brain activity changes associated with fentanyl analgesia elucidated by positron emission tomography. Anesthesia & Analgesia 84(1):120-126, 1997. PMID: 8989012. WOBIB: 101.
During combined pain stimulation and fentanyl administration, fentanyl significantly augmented pain-related rCBF increases in the supplementary motor area and prefrontal cortexL. J. Adler; F. E. Gyulai; D. J. Diehl; M. A. Mintun; P. M. Winter; L. L. Firestone. Regional brain activity changes associated with fentanyl analgesia elucidated by positron emission tomography. Anesthesia & Analgesia 84(1):120-126, 1997. PMID: 8989012. WOBIB: 101.
Painful stimulation produced contralateral activation in primary and secondary somatosensory cortices (SI and SII), anterior cingulate cortex, anterior insula, the supplemental motor area of the frontal cortex, and thalamusR. C. Coghill; J. D. Talbot; A. C. Evans; Ernst Meyer; Albert Gjedde; M. C. Bushnell; G. H. Duncan. Distributed processing of pain and vibration by the human brain. Journal of Neuroscience 14(7):4095-108, 1994. PMID: 8027764. WOBIB: 117.
Monitoring incongruent compared with congruent movement activated the premotor area bilaterally and the right temporoparietal junctionDaniela Balslev; Finn Årup Nielsen; Olaf B. Paulson; Ian Law. Right Temporoparietal Cortex Activation during Visuo-proprioceptive Conflict. Cerebral Cortex 15(2):166-169, 2004. PMID: 15238438. DOI: 10.1093/cercor/bhh119. WOBIB: 128.
The single dipole modelling identified as likely the supplementary motor area, SMA area-6 source for N550, and posterior cingulate area-23 for P750Andrew C. N. Chen; David M. Niddam; Helen J. Crawford; Robert Oostenveld; Lars Arendt-Nielsen. Spatial summation of pain processing in the human brain as assessed by cerebral event related potentials. Neuroscience Letters 328(2):190-194, 2002. PMID: 12133585. FMRIDCID: . WOBIB: 136.
Multimodally responsive areas comprised a right-lateralized network including the temporoparietal junction, inferior frontal gyrus, insula and left cingulate and supplementary motor areasJ. Downar; A. P. Crawley; D. J. Mikulis; K. D. Davis. A multimodal cortical network for the detection of changes in the sensory environment. Nature Neuroscience 3(3):277-283, 2000. PMID: 10700261. DOI: 10.1038/72991. FMRIDCID: . WOBIB: 148.
There were activations during both conditions in the supplementary motor area (stronger and more inferior in the active condition) and inferior parietal cortex (on the convexity during active movements and in the depth of the central sulcus during passive movements)C. Weiller; M. Juptner; S. Fellows; M. Rijntjes; G. Leonhardt; S. Kiebel; S. Muller; H. C. Diener; A. F. Thilmann. Brain representation of active and passive movements. NeuroImage 4(2):105-110, 1996. PMID: 9345502. FMRIDCID: . WOBIB: 151.
05) of normalized cerebral counts were located in the left sensorimotor cortex (MISI), right motor cortex, left thalamus, right insula, supplementary motor area (SMA), and bilaterally in the primary auditory cortex and the cerebellumMorten Blinkenberg; Christian Bonde; Søren Holm; Claus Svarer; Jimmy Andersen; Olaf B. Paulson; Ian Law. Rate dependence of regional cerebral activation during performance of a repetitive motor task: a PET study. Journal of Cerebral Blood Flow and Metabolism 16(5):794-803, 1996. PMID: 8784224. DOI: 10.1097/00004647-199609000-00004. FMRIDCID: . WOBIB: 166.

Text count

Bib -> Asymmetry | Author | ICA | NMF | Novelty | Statistics | SVD | Title | WOBIB ]
Roi -> Alphabetic | Hammers | Tzourio-Mazoyer | Svarer | Top | Functional areas | Brodmann areas ]
[ Brede Database ]
Automatically constructed by Brede Toolbox through brede_roi_roi2html, 2006-10-05T16:45:36