WOROI: 34 - Thalamus
 
Bib -> Asymmetry | Author | ICA | NMF | Novelty | Statistics | SVD | Title | WOBIB ]
 
 
Roi -> Alphabetic | Hammers | Tzourio-Mazoyer | Svarer | Top | Functional areas | Brodmann areas ]
 
 
[ Brede Database ]
 


WOROI: 34 - Thalamus

Abbreviation: Th

External databases

BrainInfo: 283
IBVD: Thalamus
Wikipedia: Thalamus

Taxonomy

ParentsSiblingsChildren
Diencephalon
  Left thalamus
Right thalamus
Anterior thalamic nucleus
Reticular thalamic nucleus
Ventroanterior thalamic nucleus
Ventrolateral thalamic nucleus
Laterodorsal thalamic nucleus
Mediodorsal thalamic nucleus
Ventral posterior medial thalamic nucleus
Centromedian thalamic nucleus
Ventrolateral posterior thalamic nucleus
Paraventricular thalamic nucleus
Lateral posterior thalamic nucleus
Pulvinar
Lateral geniculate thalamic nucleus
Medial geniculate thalamic nucleus
Lateral nuclear group
Metathalamus
Midline thalamic nuclear group
Ventral thalamic nuclei
Subthalamus
Anteromedial thalamic nucleus
Suprageniculate nucleus
Medial nuclear thalamic group
Ventroposterior nuclei
Ventroposterolateral thalamic nucleus
Interthalamic adhesion

Talairach coordinates

  x     y     z   Lobar anatomy WOBIB WOEXP
-20 -14 4 Left putamen and thalamus 1 1
20 -20 16 Right thalamus 1 1
6 -20 9 Right thalamus 3 6
-3 -23 4 Left thalamus 3 6
-2 -12 10 Left thalamus 4 9
4 -12 10 Right thalamus 4 9
-4 -5 -12 Left hypothalamus 4 9
4 -5 -12 Right thalamus 4 9
12 -20 4 Right thalamus 13 34
20 -6 0 Right thalamus 13 35
-4 -23 7 Left thalamus 17 50
0 -15 12 Right thalamus 17 50
10 -13 4 Right thalamus 17 50
4 -3 11 Thalamus 20 65
9 -14 9 Right medial thalamus 24 77
-12 -14 9 Left medial thalamus 24 77
6 -5 11 Right thalamus 38 127
21 -21 3 Right thalamus 39 132
-10 -7 7 Left thalamus and septum 39 132
-13 -23 4 Thalamus, ventral posterior/lateral medial nucleus 45 148
12 -23 10 Thalamus, lateral posterior nucleus 45 148
-18 -23 13 Thalamus, lateral posterior nucleus 45 148
-10 -17 11 Thalamus, ventral lateral nucleus 45 148
16 -15 9 Thalamus 47 151
-10 -9 2 Thalamus 47 151
-13 -17 1 Thalamus 47 151
3 -12 12 Thalamus 57 182
6 -18 15 Thalamus 57 183
4 -32 -12 Posterior thalamus 61 192
1 -9 -6 Hypothalamus 62 193
26 -31 15 Right thalamus 71 223
9 -21 6 Thalamus 72 225
16 -12 9 Thalamus 72 226
9 -21 6 Thalamus 72 227
18 -21 8 Right thalamus 76 233
-10 -25 9 Left thalamus 76 233
12 -14 1 Right thalamus 76 235
-12 -23 10 Left thalamus 76 238
10 -6 4 Right thalamus 76 238
0 -4 8 Thalamus 78 243
-17 -10 16 Left thalamus 79 247
18 -25 5 Right posterior thalamus 81 253
-18 -29 5 Left posterior thalamus 81 253
-14 -7 13 Left thalamus 82 256
-2 -14 1 Dorso-medial thalamus (medial) 82 260
16 -5 15 Thalamus 83 265
12 -20 10 Thalamus (bilateral) 85 271
8 -21 10 Thalamus (bilateral) 85 273
10 -13 10 Thalamus 90 290
6 -11 4 Right thalamus 91 292
-4 -8 4 Thalamus 93 294
-6 -8 -3 Hypothalamus 93 294
-4 -12 1 Thalamus 93 295
-2 -10 -6 Hypothalamus 93 295
-15 -24 9 Thalamus, ventral posterior 95 299
21 -15 9 Thalamus, ventral lateral/n. lenticularis 95 299
8 -19 9 Medial thalamus 95 299
-10 -22 4 Left thalamus 96 300
-3 -20 5 Bilaterally in the hypothalamus and the central grey of the midbrain 99 310
-3 -18 9 Left thalamus 99 310
1 -17 9 Right thalamus 99 310
4 -6 4 Thalamus 100 312
-2 -14 8 Thalamus 100 312
-26 -20 12 Left thalamus (and adjacent cortex) 101 314
6 -14 4 Right thalamus 101 317
-10 -12 4 Left thalamus 101 317
-8 -24 2 Thalamus 102 318
-8 -15 4 Thalamus 102 319
6 -15 11 Thalamus 102 319
-10 -19 7 Thalamus 102 320
1 -19 7 Thalamus 102 320
16 -16 4 Right thalamus 104 323
-4 -19 5 Left mediodorsal nucleus of thalamus 107 333
-10 -2 4 Ventral striatum, nucleus accumbens, anterior thalamus, ventral tegmentum area, hypothalamus, amygdala 111 342
2 -4 11 Right thalamus 116 359
11 -19 -3 Thalamus 117 362
11 -23 -3 Thalamus 117 364
3 -22 7 Thalamus 118 367
-15 -17 14 Thalamus 118 368
6 19 16 Thalamus 118 368
12 -13 11 Thalamus 118 368
-4 -17 2 Right thalamus (medio-dorsal nucleus) 119 369
4 -19 2 Left thalamus (medio-dorsal nucleus) 119 369
-12 -3 9 Left thalamus 122 380
-12 -7 15 Left thalamus 124 386
16 -19 12 Thalamus 127 392
10 0 8 Anterior thalamus/caudate (head) 130 402
22 -26 8 Posterior thalamus 130 403
-6 -12 16 Medial thalamus 130 403
-17 -4 0 Left thalamus/globus pallidus 134 411
17 -17 10 Right thalamus 134 411
-12 -13 3 Left thalamus 134 413
-10 -18 4 Left posterior thalamus 135 418
4 -22 12 Right thalamus 135 419
-2 -17 8 Left hypothalamus 137 424
6 -11 6 Right thalamus 137 424
0 -9 12 Left/right medial dorsal thalamus 141 431
-22 -31 11 Left lateral dorsal thalamus 141 433
2 -22 0 Right thalamus 159 490
-2 -22 8 Left thalamus 159 490
6 -20 0 Right thalamus 159 491
-8 -24 12 Left thalamus 159 491
0 -8 -10 Hypothalamus 161 493
-26 -24 4 Left thalamus 166 510
14 -14 14 Right ventrolateral thalamus 168 515
12 -12 2 Right thalamus 174 533
-4 -13 17 Left thalamus 174 533
3 -21 5 Right thalamus 176 538
-5 -23 6 Left thalamus 176 539
3 -18 12 Right thalamus 176 539
-10 -8 4 Thalamus 177 540
-6 -4 0 Hypothalamus 177 540
12 -28 4 Thalamus 177 541
-10 -26 4 Thalamus 177 541
6 -12 -8 Hypothalamus 177 541
8 -16 0 Thalamus 177 542
-4 -20 4 Thalamus 177 542
-8 0 8 Thalamus 177 543
-8 -22 12 Thalamus 177 544
4 -6 -8 Hypothalamus 177 544
8 -20 0 Thalamus 177 545
14 -16 4 Thalamus 177 546
8 -20 0 Thalamus 177 547
-6 -20 0 Thalamus 177 547
0 -12 -4 Hypothalamus 177 547
14 -20 0 Thalamus 177 548
-10 -12 0 Thalamus 177 548
-3 -5 11 Left caudate/bilateral thalamus 179 562
-9 -12 13 Thalamus 180 563
4 -2 0 Anterior thalamus 182 574
-8 0 8 Anterior thalamus 182 575
-4 -18 12 Left dorsomedial thalamus 185 581
-2 -16 12 Left dorsomedial thalamus 185 582
-4 -28 12 Left pulvinar thalamus 185 582

Summary

  x     y     z   Description
-9 -15 6 Mean coordinate in left hemisphere
10 -15 6 Mean coordinate in right hemisphere
9 -15 6 Mean coordinate with ignored left/right
0 -32 -12 Minimum coordinate with ignored left/right
26 19 17 Maximum coordinate with ignored left/right
6 8 6 Standard deviation with ignored left/right
corner cube of WOROI: 34 - Thalamus

Text contexts

Only for the group of male subjects was there evidence of a significant activation of the thalamus and hypothalamus, a sexually dimorphic area of the brain known to play a pivotal role in physiological arousal and sexual behaviorSherif Karama; Andre R. Lecours; Jean-Maxime Leroux; Pierre Bourgouin; Gilles Beaudoin; Sven Joubert; Mario Beauregard. Areas of brain activation in males and females during viewing of erotic film excerpts. Human Brain Mapping 16(1):1-13, 2002. PMID: 11870922. WOBIB: 4.
They further suggest that the greater SA generally experienced by men, when viewing erotica, may be related to the functional gender difference found here with respect to the hypothalamusSherif Karama; Andre R. Lecours; Jean-Maxime Leroux; Pierre Bourgouin; Gilles Beaudoin; Sven Joubert; Mario Beauregard. Areas of brain activation in males and females during viewing of erotic film excerpts. Human Brain Mapping 16(1):1-13, 2002. PMID: 11870922. WOBIB: 4.
Multiple brain areas, including bilateral secondary somatosensory cortices (SII) and insula, and the frontal lobe and thalamus contralateral to the stimulus side, were found to be involved in the response to painful stimulationX. Xu; H. Fukuyama; S. Yazawa; T. Mima; T. Hanakawa; Y. Magata; M. Kanda; N. Fujiwara; K. Shindo; T. Nagamine; H. Shibasaki. Functional localization of pain perception in the human brain studied by PET. NeuroReport 8(2):555-559, 1997. PMID: 9080447. WOBIB: 13.
On the left side, activation of the middle frontal gyrus, superior frontal gyrus, superior precentral gyrus, thalamus and the caudal part of the anterior cingulate gyrus was seen, while on the right side we found activation in the supramarginal gyrus, mesencephalon and insulaS. Nour; Claus Svarer; J. K. Kristensen; O. B. Paulson; I. Law. Cerebral activation during micturition in normal men. Brain 123 ( Pt 4):781-9, 2000. PMID: 10734009. WOBIB: 17.
09) without correction for multiple comparisons, we found additional activation in the medial pontine tegmentum, mesencephalon, right thalamus, right middle frontal gyrus and left insulaS. Nour; Claus Svarer; J. K. Kristensen; O. B. Paulson; I. Law. Cerebral activation during micturition in normal men. Brain 123 ( Pt 4):781-9, 2000. PMID: 10734009. WOBIB: 17.
fMRI regions that correlated with the amplitude of the P300 wave were supramarginal gyri, thalamus, insula and right medial frontal gyrus, and are presumably sources of the P300 waveSilvina Horovitz; Pawel Skudlarski; John Gore. Correlations and dissociations between BOLD signal and P300 amplitude in an auditory oddball task: a parametric approach to combining fMRI and ERP. Magnetic Resonance Imaging 20(4):319, 2002. PMID: 12165350. WOBIB: 19.
Enhanced haemodynamic responses during attentive conditions defined an occipitoparietofrontal system, including sensory and association areas, as well as the medial thalamus and superior colliculusChristian Büchel; Oliver Josephs; G. Rees; R. Turner; C. D. Frith; Karl J. Friston. The functional anatomy of attention to visual motion. A functional MRI study. Brain 121 ( Pt 7):1281-94, 1998. PMID: 9679780. WOBIB: 24.
Comparing baseline scans during pain with scans taken after stimulation, when the patient had become pain-free, revealed significant rCBF increases in the prefrontal (Brodmann areas (BA) 9, 10, 11 and 47) and anterior insular cortices, hypothalamus and periaqueductal gray associated with the presence of chronic painR. C. Kupers; J. M. Gybels; Albert Gjedde. Positron emission tomography study of a chronic pain patient successfully treated with somatosensory thalamic stimulation. Pain 87(3):295-302, 2000. PMID: 10963909. WOBIB: 62.
No significant rCBF changes occurred in thalamus, primary and secondary somatosensory cortex and anterior cingulate cortex, BA 24'R. C. Kupers; J. M. Gybels; Albert Gjedde. Positron emission tomography study of a chronic pain patient successfully treated with somatosensory thalamic stimulation. Pain 87(3):295-302, 2000. PMID: 10963909. WOBIB: 62.
In the 46 degrees C experiment, positive signal changes were found in the frontal gyri, anterior and posterior cingulate gyrus, thalamus, motor cortex, somatosensory cortex (SI and SII), supplementary motor area, insula, and cerebellumL. R. Becerra; H. C. Breiter; M. Stojanovic; S. Fishman; A. Edwards; A. R. Comite; R. G. Gonzalez; D. Borsook. Human brain activation under controlled thermal stimulation and habituation to noxious heat: an fMRI study. Magnetic Resonance in Medicine 41(5):1044-57, 1999. PMID: 10332889. WOBIB: 72.
However, except for SI and thalamus, significantly more activation was observed for the 46 degrees C stimulusL. R. Becerra; H. C. Breiter; M. Stojanovic; S. Fishman; A. Edwards; A. R. Comite; R. G. Gonzalez; D. Borsook. Human brain activation under controlled thermal stimulation and habituation to noxious heat: an fMRI study. Magnetic Resonance in Medicine 41(5):1044-57, 1999. PMID: 10332889. WOBIB: 72.
The results of our activation study indicate that different functions in pain processing can be attributed to different brain regions; ie, the gating function reflected by the pain threshold appeared to be related to anterior cingulate cortex, the frontal inferior cortex, and the thalamus, the coding of pain intensity to the periventricular gray as well as to the posterior cingulate cortex, and the encoding of pain unpleasantness to the posterior sector of the anterior cingulate cortexT. R. Tolle; T. Kaufmann; T. Siessmeier; S. Lautenbacher; A. Berthele; F. Munz; W. Zieglgansberger; F. Willoch; M. Schwaiger; B. Conrad; P. Bartenstein. Region-specific encoding of sensory and affective components of pain in the human brain: a positron emission tomography correlation analysis. Annals of Neurology 45(1):40-47, 1999. PMID: 9894875. WOBIB: 79.
Subcortical activations were found in cerebellum (particularly the vermis) and in the thalamus with the focus in a region comprising the lateral geniculate nucleus, the pulvinar, and adjacent parts of the reticular nucleusClaus Bundesen; Axel Larsen; Soren Kyllingsbaek; Olaf B. Paulson; Ian Law. Attentional effects in the visual pathways: a whole-brain PET study. Experimental Brain Research 147(3):394-406, 2002. PMID: 12428147. DOI: 10.1007/s00221-002-1243-1. WOBIB: 81.
The attentional effects found by the shape-color comparison in the thalamus and the primary visual cortex may have been generated by feedback signals preserving visual representations of selected stimuli in short-term memoryClaus Bundesen; Axel Larsen; Soren Kyllingsbaek; Olaf B. Paulson; Ian Law. Attentional effects in the visual pathways: a whole-brain PET study. Experimental Brain Research 147(3):394-406, 2002. PMID: 12428147. DOI: 10.1007/s00221-002-1243-1. WOBIB: 81.
We observed an interaction between the predictability of stimuli and self-generated actions in several areas, including the medial posterior cingulate cortex, left insula, dorsomedial thalamus, superior colliculus and right inferior temporal cortexS. J. Blakemore; G. Rees; C. D. Frith. How do we predict the consequences of our actions? A functional imaging study. Neuropsychologia 36(6):521-9, 1998. PMID: 9705062. WOBIB: 82.
Nodes on this network include the frontal, parietal, and temporal cortices, the thalamus, the anterior and posterior cingulate, the precuneus, and the cerebellumNancy C. Andreasen; D. S. O'Leary; T. Cizadlo; Stephan Arndt; K. Rezai; G. L. Watkins; L. L. Ponto; R. D. Hichwa. II. PET studies of memory: novel versus practiced free recall of word lists. NeuroImage 2(4):296-305, 1995. PMID: 9343614. WOBIB: 85.
Pleasant and unpleasant emotions were each distinguished from neutral emotion conditions by significantly increased cerebral blood flow in the vicinity of the medial prefrontal cortex (Brodmann's area 9), thalamus, hypothalamus and midbrain (P < 0Richard D. Lane; Eric M. Reiman; M. M. Bradley; P. J. Lang; Geoffrey L. Ahern; Richard J. Davidson; Gary E. Schwartz. Neuroanatomical correlates of pleasant and unpleasant emotion. Neuropsychologia 35(11):1437-44, 1997. PMID: 9352521. BrainMap: 276. WOBIB: 93.
These structures include the contralateral M1/S1 cortex, bilateral S2 and mid-insular cortex, contralateral VP thalamus, medial ipsilateral thalamus, and the vermis and paravermis of the cerebellumK. L. Casey; T. J. Morrow; J. Lorenz; S. Minoshima. Temporal and spatial dynamics of human forebrain activity during heat pain: analysis by positron emission tomography. Journal of Neurophysiology 85(2):951-9, 2001. PMID: 11160525. WOBIB: 95.
The results show that regional cerebral blood flow is positively correlated with REM sleep in pontine tegmentum, left thalamus, both amygdaloid complexes, anterior cingulate cortex and right parietal operculumP. Maquet; J. Peters; J. Aerts; G. Delfiore; C. Degueldre; A. Luxen; G. Franck. Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature 383(6596):163-6, 1996. PMID: 8774879. WOBIB: 96.
Subcortically, conditioning increased rCBF bilaterally in the ventromedial thalamus, the posterior hypothalamus and the central grey of the midbrainM. Fredrikson; G. Wik; Hċkan Fischer; J. Andersson. Affective and attentive neural networks in humans: a PET study of Pavlovian conditioning. NeuroReport 7(1):97-101, 1995. PMID: 8742426. WOBIB: 99.
It was found that pain increased rCBF in the anterior cingulate, ipsilateral thalamus, prefrontal cortex, and contralateral supplementary motor areaL. J. Adler; F. E. Gyulai; D. J. Diehl; M. A. Mintun; P. M. Winter; L. L. Firestone. Regional brain activity changes associated with fentanyl analgesia elucidated by positron emission tomography. Anesthesia & Analgesia 84(1):120-126, 1997. PMID: 8989012. WOBIB: 101.
Fentanyl increased rCBF in the anterior cingulate and contralateral motor cortices, and decreased rCBF in the thalamus (bilaterally) and posterior cingulate during both stimuliL. J. Adler; F. E. Gyulai; D. J. Diehl; M. A. Mintun; P. M. Winter; L. L. Firestone. Regional brain activity changes associated with fentanyl analgesia elucidated by positron emission tomography. Anesthesia & Analgesia 84(1):120-126, 1997. PMID: 8989012. WOBIB: 101.
Significant increases in rCBF to the 43 degrees C stimuli were found in the contralateral ventral posterior thalamus, lenticular nucleus, medial prefrontal cortex (Brodmann's areas 10 and 32), and cerebellar vermisK. L. Casey; S. Minoshima; T. J. Morrow; R. A. Koeppe. Comparison of human cerebral activation pattern during cutaneous warmth, heat pain, and deep cold pain. Journal of Neurophysiology 76(1):571-81, 1996. PMID: 8836245. WOBIB: 102.
Significant rCBF increases to 50 degrees C stimuli were found contralaterally in the thalamus, anterior cingulate cortex, premotor cortex, and secondary somatosensory (S2) and posterior insular corticesK. L. Casey; S. Minoshima; T. J. Morrow; R. A. Koeppe. Comparison of human cerebral activation pattern during cutaneous warmth, heat pain, and deep cold pain. Journal of Neurophysiology 76(1):571-81, 1996. PMID: 8836245. WOBIB: 102.
The ipsilateral premotor cortex and thalamus, and the medial dorsal midbrain and cerebellar vermis, also showed significant rCBF increasesK. L. Casey; S. Minoshima; T. J. Morrow; R. A. Koeppe. Comparison of human cerebral activation pattern during cutaneous warmth, heat pain, and deep cold pain. Journal of Neurophysiology 76(1):571-81, 1996. PMID: 8836245. WOBIB: 102.
The group showed significant positive correlations between symptom intensity and blood flow in the right inferior frontal gyrus, caudate nucleus, putamen, globus pallidus and thalamus, and the left hippocampus and posterior cingulate gyrusPhilip K. McGuire; C. J. Bench; C. D. Frith; I. M. Marks; Richard S. J. Frackowiak; R. J. Dolan. Functional anatomy of obsessive-compulsive phenomena. British Journal of Psychiatry 164(4):459-468, 1994. PMID: 8038933. WOBIB: 104.
It is hypothesised that the increases in rCBF in the orbitofrontal cortex, neostriatum, global pallidus and thalamus were related to urges to perform compulsive movements, while those in the hippocampus and posterior cingulate cortex corresponded to the anxiety that accompanied themPhilip K. McGuire; C. J. Bench; C. D. Frith; I. M. Marks; Richard S. J. Frackowiak; R. J. Dolan. Functional anatomy of obsessive-compulsive phenomena. British Journal of Psychiatry 164(4):459-468, 1994. PMID: 8038933. WOBIB: 104.
Painful stimulation produced contralateral activation in primary and secondary somatosensory cortices (SI and SII), anterior cingulate cortex, anterior insula, the supplemental motor area of the frontal cortex, and thalamusR. C. Coghill; J. D. Talbot; A. C. Evans; Ernst Meyer; Albert Gjedde; M. C. Bushnell; G. H. Duncan. Distributed processing of pain and vibration by the human brain. Journal of Neuroscience 14(7):4095-108, 1994. PMID: 8027764. WOBIB: 117.
Volume of interest comparison (t-statistic) also suggested greater activation of the contralateral insula and thalamus in the females (P < 0P. E. Paulson; S. Minoshima; T. J. Morrow; K. L. Casey. Gender differences in pain perception and patterns of cerebral activation during noxious heat stimulation in humans. Pain 76(1-2):223-9, 1998. PMID: 9696477. WOBIB: 118.
The results from the group analysis documented that permanent amnesia is associated with hypometabolism in the thalamus, posterior cingulate cortex, and mesial prefrontal cortex (near the anterior cingulate gyrus), bilaterally, as well as in the left supramarginal and middle temporal gyriA. M. Aupee; B. Desgranges; F. Eustache; C. Lalevee; V. de la Sayette; F. Viader; J. C. Baron. Voxel-based mapping of brain hypometabolism in permanent amnesia with PET. NeuroImage 13(6 Pt 1):1164-73, 2001. PMID: 11352622. DOI: 10.1006/nimg.2001.0762. WOBIB: 119.
Findings from functional imaging studies have shown activation of the brainstem during migraine without aura (MWOA) and activation of the hypothalamus during cluster headacheA. Bahra; M. S. Matharu; Christian Büchel; Richard S. J. Frackowiak; P. J. Goadsby. Brainstem activation specific to migraine headache. Lancet 357(9261):1016-7, 2001. PMID: 11293599. WOBIB: 122.
During sleep there was a relative flow increase in the occipital lobes and a relative flow decrease in the bilateral cerebellum, the bilateral posterior parietal cortex, the right premotor cortex and the left thalamusTroels W. Kjaer; Ian Law; Gordon Wiltschiotz; Olaf B. Paulson; Peter L. Madsen. Regional cerebral blood flow during light sleep--a H(2)(15)O-PET study. Journal of Sleep Research 11(3):201-207, 2002. PMID: 12220315. WOBIB: 124.
The rCBF decreases in premotor cortex, thalamus and cerebellum could be indicative of a general decline in preparedness for goal directed action during stage-1 sleepTroels W. Kjaer; Ian Law; Gordon Wiltschiotz; Olaf B. Paulson; Peter L. Madsen. Regional cerebral blood flow during light sleep--a H(2)(15)O-PET study. Journal of Sleep Research 11(3):201-207, 2002. PMID: 12220315. WOBIB: 124.
Graphical analysis followed by statistical parametric mapping (SPM96) revealed that H1-receptor rich regions such as cortices, cingulate gyrus and thalamus were regions where the BPs after ebastine were significantly higher than after (+)-chlorpheniramine (2 mg)M. Tagawa; M. Kano; N. Okamura; M. Higuchi; M. Matsuda; Y. Mizuki; H. Arai; R. Iwata; T. Fujii; S. Komemushi; T. Ido; M. Itoh; H. Sasaki; T. Watanabe; K. Yanai. Neuroimaging of histamine H1-receptor occupancy in human brain by positron emission tomography (PET): a comparative study of ebastine, a second-generation antihistamine, and (+)-chlorpheniramine, a classical antihistamine. British Journal of Clinical Pharmacology 52(5):501-509, 2001. PMID: 11736858. WOBIB: 127.
In an individual patient with prominent coprolalia, such vocal tics were associated with activity in prerolandic and postrolandic language regions, insula, caudate, thalamus, and cerebellum, while activity in sensorimotor cortex was noted with motor ticsE. Stern; D. A. Silbersweig; K. Y. Chee; Andrew Holmes; M. M. Robertson; M. Trimble; Christopher D. Frith; Richard S. J. Frackowiak; Raymond J. Dolan. A functional neuroanatomy of tics in Tourette syndrome. Archives of General Psychiatry 57(8):741-748, 2000. PMID: 10920461. FMRIDCID: . WOBIB: 130.
Focused episodic memory engaged a network that included the medial inferior frontal regions, precuneus/retrosplenial cingulate, anterior cingulate, thalamus, and cerebellumNancy C. Andreasen; Daniel S. O'Leary; Ted Cizadlo; Stephan Arndt; Karim Rezai; G. Leonard Watkins; Laura L. Ponto; Richard D. Hichwa. Remembering the past: two facets of episodic memory explored with positron emission tomography. American Journal of Psychiatry 152(11):1576-1585, 1995. PMID: 7485619. FMRIDCID: . BrainMap: 219. WOBIB: 134.
FINDINGS: In the acute pain state, activation was seen in the ipsilateral inferior hypothalamic grey matter, the contralateral ventroposterior thalamus, the anterior cingulate cortex, and bilaterally in the insulaeArne May; Anish Bahra; Christian Büchel; Richard S. J. Frackowiak; Peter J. Goadsby. Hypothalamic activation in cluster headache attacks. Lancet 352(9124):275-278, 1998. PMID: 9690407. FMRIDCID: . WOBIB: 137.
Activation in the hypothalamus was seen solely in the pain state and was not seen in patients who have cluster headache but were out of the boutArne May; Anish Bahra; Christian Büchel; Richard S. J. Frackowiak; Peter J. Goadsby. Hypothalamic activation in cluster headache attacks. Lancet 352(9124):275-278, 1998. PMID: 9690407. FMRIDCID: . WOBIB: 137.
INTERPRETATION: Our findings establish central nervous system dysfunction in the region of the hypothalamus as the primum movens in the pathophysiology of cluster headacheArne May; Anish Bahra; Christian Büchel; Richard S. J. Frackowiak; Peter J. Goadsby. Hypothalamic activation in cluster headache attacks. Lancet 352(9124):275-278, 1998. PMID: 9690407. FMRIDCID: . WOBIB: 137.
05) of normalized cerebral counts were located in the left sensorimotor cortex (MISI), right motor cortex, left thalamus, right insula, supplementary motor area (SMA), and bilaterally in the primary auditory cortex and the cerebellumMorten Blinkenberg; Christian Bonde; Sĝren Holm; Claus Svarer; Jimmy Andersen; Olaf B. Paulson; Ian Law. Rate dependence of regional cerebral activation during performance of a repetitive motor task: a PET study. Journal of Cerebral Blood Flow and Metabolism 16(5):794-803, 1996. PMID: 8784224. DOI: 10.1097/00004647-199609000-00004. FMRIDCID: . WOBIB: 166.
RESULTS: PTSD subjects showed significantly less activation of the thalamus, the anterior cingulate gyrus (Brodmann's area 32), and the medial frontal gyrus (Brodmann's area 10/11) than did the comparison subjectsRuth A Lanius; Peter C. Williamson; Maria C. Densmore; Kristine Boksman; Madhulika A. Gupta; R. W. Neufeld; Joseph S. Gati; Ravi S. Menon. Neural Correlates of Traumatic Memories in Posttraumatic Stress Disorder: A Functional MRI Investigation. The American Journal of Psychiatry 158(11):1920-1922, 2001. PMID: 11691703. FMRIDCID: . WOBIB: 174.
Stroop interference was found to activate the left anterior cingulate cortex, the supplementary motor cortex, thalamus, and the cerebellumBarbara Ravnkilde; Poul Videbech; Raben Rosenberg; Albert Gjedde; Anders Gade. Putative Tests of Frontal Lobe Function: A PET-Study of Brain Activation During Stroop's Test and Verbal Fluency. Journal of Clinical and Experimental Neuropsychology 24(4):534-547, 2002. PMID: 12187466. DOI: 10.1076/jcen.24.4.534.1033. FMRIDCID: . WOBIB: 176.
RESULTS: Happiness, sadness, and disgust were each associated with increases in activity in the thalamus and medial prefrontal cortex (Brodmann's area 9)Richard D. Lane; Eric M. Reiman; Geoffrey L. Ahern; Gary E. Schwartz; Richard J. Davidson. Neuroanatomical Correlates of Happiness, Sadness, and Disgust. The American Journal of Psychiatry 154(7):926-933, 1997. PMID: 9210742. FMRIDCID: . WOBIB: 177.
We found positive correlations between IQ and gray matter density in the orbitofrontal cortex, cingulate gyrus, the cerebellum, and thalamus and negative correlations in the caudate nucleusSophia Frangou; Xavier Chitins; Steven C. R. Williams. Mapping IQ and gray matter density in healty young people. NeuroImage 23(8):800-805, 2004. PMID: 15528081. DOI: 10.1016/j.neuroimage.2004.05.027. FMRIDCID: . WOBIB: 180.
Duringpointing to the previous,instead, there was additional activation of supplementary motor cortex, anterior and midcingulate, and inferior occipital gyrus in the left hemisphere; superior parietal lobule, supramarginal gyrus, and posterior hippocampus in the right hemisphere; lingual gyri and cerebellar hemispheres bilaterally; anterior thalamus; and pulvinarF. Lacquaniti; Daniela Perani; E. Guigon; V. Bettinardi; M. Carrozzo; F. Grassi; Yves Rossetti; F. Fazio. Visuomotor Transformations for Reaching to Memorized Targets: A PET study. NeuroImage 5(2):129-146, 1997. PMID: 9345543. DOI: 10.1006.nimg.1996.0254. FMRIDCID: . WOBIB: 182.
In comparison with resting state, both tasks activated the anterior triangular portion of the left inferior frontal gyrus (IFG or F3, for third frontal gyrus) and the left thalamusEraldo Paulesu; Ben Goldacre; Paola Scifo; Stefano F. Cappa; Maria Carla Gilardi; Isabella Castiglioni; Daniela Perani; Frruccio Fazio. Functional heterogeneity of left inferior frontal cortex as revealed by fMRI. NeuroReport 8(8):2011-2017, 1997. PMID: 9223094. FMRIDCID: . WOBIB: 185.

Text count

Bib -> Asymmetry | Author | ICA | NMF | Novelty | Statistics | SVD | Title | WOBIB ]
Roi -> Alphabetic | Hammers | Tzourio-Mazoyer | Svarer | Top | Functional areas | Brodmann areas ]
[ Brede Database ]
Automatically constructed by Brede Toolbox through brede_roi_roi2html, 2006-10-05T15:27:11