WOROI: 32 - Cerebellum
 
Bib -> Asymmetry | Author | ICA | NMF | Novelty | Statistics | SVD | Title | WOBIB ]
 
 
Roi -> Alphabetic | Hammers | Tzourio-Mazoyer | Svarer | Top | Functional areas | Brodmann areas ]
 
 
[ Brede Database ]
 


WOROI: 32 - Cerebellum

Abbreviation: Cb

External databases

MeSH UID: D002531
BrainInfo: 640
Wikipedia: Cerebellum
ICBM Label: 67

Taxonomy

ParentsSiblingsChildren
Metencephalon
  Left cerebellum
Right cerebellum
Nucleus dentate
Vermis
Cerebellar cortex
Cerebrallar white matter
Cerebellar nucleus

Talairach coordinates

  x     y     z   Lobar anatomy WOBIB WOEXP
44 -54 -24 Cerebellum 8 16
-20 -54 -28 Left cerebellum 13 34
30 -76 -28 Right cerebellum 13 34
-33 -72 -33 Left cerebellum 15 44
23 -72 -35 Right cerebellum 15 44
-6 -56 -6 Medial cerebellum 15 44
34 -64 -33 Right cerebellum 15 45
27 -79 -26 Right cerebellum 15 45
1 -64 -20 Medial cerebellum 15 46
25 -72 -10 Right cerebellum 15 46
-24 -64 -24 Left cerebellum 15 46
-10 -52 -16 Cerebellum 16 47
46 -74 -32 Cerebellum 16 48
30 -43 -40 Right cerebellum 17 50
36 -48 -31 Right cerebellum 17 50
-24 -66 -37 Left cerebellum 17 50
-32 -42 -32 Left cerebellum 17 50
-38 -54 -26 Left cerebellum 17 50
-22 -71 -23 Left cerebellum 17 50
2 -55 -17 Right cerebellum (vermis) 17 50
2 -43 -5 Right cerebellum (vermis) 17 50
2 -55 -2 Right cerebellum 17 50
36 -48 -25 Right cerebellum 18 51
24 -73 -28 Right cerebellum 20 65
-32 -77 -28 Left cerebellum 20 65
0 -65 -15 Cerebellum 23 72
16 -55 -17 Right cerebellum 23 73
-22 -63 -19 Left cerebellum 23 73
40 -63 -20 Right posterior cerebellum/fusiform gyrus 25 78
-30 -58 -32 Left cerebellum 26 87
-32 -54 -34 Left cerebellum 26 88
-18 -92 -8 Bilateral occipital/cerebellum 35 116
-36 -72 -16 Bilateral occipital/cerebellum 35 118
-36 -64 -36 Left lateral cerebellum 35 120
24 -74 -35 Right cerebellum 38 129
-34 -40 -32 Left cerebellum 38 130
49 -36 -30 Right cerebellum 38 130
0 -48 -24 Midline cerebellum 39 132
58 -55 -24 Right cerebellum 39 132
-24 -58 -21 Left cerebellum 39 132
-3 -76 -17 Left medial cerebellum 39 133
14 -62 -21 Right medial cerebellum 39 133
25 -55 -8 Cerebellum 43 144
22 -53 -8 Cerebellum 43 145
20 -50 -25 Lateral cerebellum 45 148
-31 -55 -28 Lateral cerebellum 45 148
8 -58 -22 Intermediate cerebellum 45 148
-5 -64 -22 Intermediate cerebellum 45 148
32 -64 -34 Cerebellum, superior semilunar, crus I 47 151
32 -47 -19 Cerebellum, gracile, VIIB 47 151
-23 -66 -33 Cerebellum, gracile, VIIB 47 151
-20 -54 -14 Cerebellum, posterior quadrangle, VI 47 151
23 -72 -21 Cerebellum, superior semilunar, crus I 47 152
45 -50 -29 Cerebellum, inferior semilunar, crus II 47 152
-12 -56 -15 Cerebellum, posterior quadrangle, VI 47 152
-40 -44 -25 Cerebellum, inferior semilunar, crus II 47 152
-36 -62 -34 Cerebellum, gracile, VIIB 47 152
-7 -59 -12 Vermis - left cerebellum 48 154
-54 -48 -24 Left cerebellum 49 162
-48 -52 -36 Left cerebellum 49 164
-46 -38 -28 Left cerebellum 49 165
-36 -38 -30 Left cerebellum 51 170
-38 -49 -40 Left cerebellum 51 171
-16 -63 -14 Left cerebellum 51 171
-38 -52 -28 Left cerebellum 51 171
24 -59 -20 Right cerebellum 60 186
-36 -60 -25 Left cerebellum 60 186
21 -55 -10 Cerebellum 60 187
-18 -68 -13 Left cerebellum 60 188
-10 -82 -28 Left cerebellum 68 208
30 -79 -21 Cerebellum 70 219
-26 -79 -18 Cerebellum 70 219
-15 -57 -25 Cerebellum 72 225
12 -45 -28 Cerebellum 72 226
-25 -57 -15 Cerebellum 72 227
35 -65 -30 Right lateral cerebellum 73 228
-20 -68 -39 Left cerebellum 81 253
26 -52 -21 Right cerebellum 82 256
-40 -56 -24 Left cerebellum 82 256
10 -68 -16 Right cerebellum 84 268
10 -70 -20 Right cerebellum 84 270
-22 -67 -42 Left cerebellum 85 271
10 -66 -14 Cerebellum (bilateral) 85 271
30 -66 -42 Right cerebellum 85 271
41 -67 -28 Cerebellum (bilateral, r > 1) 85 273
-25 -64 -40 Left cerebellum 85 273
40 -69 -45 Right cerebellum 85 273
38 -67 -30 Right cerebellum 85 275
12 -71 -24 Right cerebellum 88 279
0 -58 -17 Left cerebellum 88 282
12 -73 -26 Right cerebellum 88 282
3 -47 -4 Midline cerebellum 90 290
-24 -47 -15 Lateral cerebellum 90 290
28 -58 -26 Lateral cerebellum 90 290
-40 -67 -10 Left cerebellum 93 295
34 -57 -11 Right cerebellum 93 295
21 -60 -20 Cerebellum, paravermal 95 299
-8 -96 -24 Vermis of cerebellum 105 325
8 -78 -28 Vermis of cerebellum 105 326
4 -92 -20 Vermis of cerebellum 105 327
44 -67 -17 Right cerebellum 107 333
16 -75 -20 Right cerebellum 107 333
28 -52 -24 Right cerebellum 107 336
4 -57 0 Right cerebellum 116 350
-30 -60 -35 Left cerebellum 116 354
17 -52 -15 Right cerebellum 116 354
-13 -54 -7 Left cerebellum 116 356
34 -68 -23 Right cerebellum 116 356
20 -48 -10 Right cerebellum 116 357
-63 -70 -35 Left cerebellum 116 358
17 -55 -25 Right cerebellum 116 358
-20 -38 -41 Left cerebellum 116 359
42 -54 -35 Right cerebellum 116 359
1 -53 -25 Cerebellum 116 359
-40 -62 -33 Left cerebellum 116 359
46 -63 -25 Right cerebellum 122 380
-26 -67 -15 Left cerebellum 122 380
-32 -87 -34 Left cerebellum 124 386
24 -89 -34 Right cerebellum 124 386
44 -87 -23 Right cerebellum 124 386
-18 -89 -22 Left cerebellum 125 387
-18 -89 -22 Left cerebellum 125 388
-46 -63 -20 Left cerebellum 129 394
40 -65 -15 Right cerebellum 129 394
30 -59 -19 Right cerebellum 129 394
-46 -63 -20 Left cerebellum 129 395
40 -65 -15 Right cerebellum 129 395
30 -59 -19 Right cerebellum 129 395
-46 -63 -20 Left cerebellum 129 396
40 -65 -15 Right cerebellum 129 396
30 -59 -19 Right cerebellum 129 396
12 -48 -12 Cerebellum 130 403
-2 -47 -14 Left cerebellum 132 406
-9 -57 -18 Bilateral cerebellum (right greater than left) 134 411
-13 -82 -45 Left cerebellum 134 411
35 -63 -24 Bilateral cerebellum (right greater than left) 134 413
-28 -60 -34 Left cerebellum 134 413
-41 -63 -34 Left cerebellum 134 416
6 -60 -12 Right cerebellum 135 417
10 -72 -12 Cerebellum 135 418
-2 -37 -7 Cerebellum (vermis) 137 424
44 -69 -18 Right cerebellum 141 431
38 -80 -13 Right cerebellum 141 433
-36 -75 -31 Left cerebellum 144 440
35 -83 -36 Right cerebellum 144 440
-33 -76 -21 Left cerebellum, decline 144 441
10 -46 -18 Right cerebellum/lingual gyrus 152 468
-16 -77 -16 Left cerebellum 152 470
11 -37 -7 Right cerebellum 155 475
-43 -56 24 Left cerebellum 155 475
0 -67 -7 Bilateral cerebellum 155 478
9 -31 -7 Right cerebellum 155 479
-12 -68 -16 Left cerebellum 166 510
18 -54 -20 Right cerebellum 166 510
21 -65 -22 Right cerebellum 167 512
-30 -59 -22 Left cerebellum 167 512
-14 -45 -21 Left medial cerebellum 168 515
-14 -45 -21 Left dentate of cerebellum 168 515
0 -54 -30 Right cerebellum 176 538
-8 -64 -33 Left cerebellum 176 538
-5 -59 -12 Left cerebellum 176 539
43 -78 -35 Right cerebellum 176 539
22 -52 -24 Lateral cerebellum 177 541
28 -52 -24 Lateral cerebellum 177 544
-34 -68 -20 Lateral cerebellum 177 544
-34 -44 -20 Lateral cerebellum 177 545
42 -60 -28 Lateral cerebellum 177 547
-14 -64 -28 Lateral cerebellum 177 548
26 -58 -28 Lateral cerebellum 177 548
-3 -72 -20 Medial cerebellum 179 562
-30 -40 -25 Left anterior cerebellum 180 563
-7 -64 -22 Cerebellum 180 563

Summary

  x     y     z   Description
-25 -61 -24 Mean coordinate in left hemisphere
25 -61 -22 Mean coordinate in right hemisphere
25 -61 -23 Mean coordinate with ignored left/right
0 -96 -45 Minimum coordinate with ignored left/right
63 -31 24 Maximum coordinate with ignored left/right
14 12 10 Standard deviation with ignored left/right
corner cube of WOROI: 32 - Cerebellum

Text contexts

The musical instrument stimuli mainly activated areas in visual association cortex, cerebellum, and the hippocampusK. Hugdahl; Ian Law; S. Kyllingsbaek; K. Bronnick; Anders Gade; Olaf B. Paulson. Effects of attention on dichotic listening: an 15O-PET study. Human Brain Mapping 10(2):87-97, 2000. PMID: 10864233. WOBIB: 14.
Multiple regions in the occipital lobe, inferior temporal cortex, superior parietal cortex and cerebellum were involved in the reading of mirror-reversed compared to normally oriented textRussell A. Poldrack; John E. Desmond; Gary H. Glover; John D. E. Gabrieli. The neural basis of visual skill learning: an fMRI study of mirror reading. Cerebral Cortex 8(1):1-10, 1998. PMID: 9510380. WOBIB: 15.
Before regional anesthesia, handgrip caused increased activation in the contralateral sensory motor area, the supplementary motor area, and the ipsilateral cerebellumM. Nowak; K. S. Olsen; I. Law; Søren Holm; O. B. Paulson; N. H. Secher. Command-related distribution of regional cerebral blood flow during attempted handgrip. Journal of Applied Physiology 86(3):819-824, 1999. PMID: 10066691. WOBIB: 16.
In addition to the temporal lobe activations, there were activation tendencies in the left inferior frontal lobe, right dorsolateral prefrontal cortex, left occipital lobe, and cerebellumK. Hugdahl; K. Bronnick; S. Kyllingsbaek; I. Law; Anders Gade; Olaf B. Paulson. Brain activation during dichotic presentations of consonant-vowel and musical instrument stimuli: a 15O-PET study. Neuropsychologia 37(4):431-40, 1999. PMID: 10215090. WOBIB: 26.
A small region in the medial cerebellum was also active when observers viewed biological-motion sequencesE. Grossman; M. Donnelly; R. Price; D. Pickens; V. Morgan; G. Neighbor; R. Blake. Brain areas involved in perception of biological motion. Journal of Cognitive Neuroscience 12(5):711-20, 2000. PMID: 11054914. WOBIB: 33.
Painful thermal stimulation of either hand elicited significant activity over a large network of brain regions, including insula, inferior frontal gyrus, cingulate gyrus, secondary somatosensory cortex, cerebellum, and medial frontal gyrus (corrected P < 0Jonathan C. W. Brooks; Turo J. Nurmikko; William E. Bimson; Krish D. Singh; Neil Roberts. fMRI of thermal pain: effects of stimulus laterality and attention. NeuroImage 15(2):293-301, 2002. PMID: 11798266. DOI: 10.1006/nimg.2001.0974. WOBIB: 60.
In addition, the right temporomesial, right dorsal prefrontal, right posterior cingulate areas, and the left cerebellum were activatedG. R. Fink; H. J. Markowitsch; M. Reinkemeier; T. Bruckbauer; J. Kessler; W. D. Heiss. Cerebral representation of one's own past: neural networks involved in autobiographical memory. Journal of Neuroscience 16(13):4275-82, 1996. PMID: 8753888. WOBIB: 68.
In the 46 degrees C experiment, positive signal changes were found in the frontal gyri, anterior and posterior cingulate gyrus, thalamus, motor cortex, somatosensory cortex (SI and SII), supplementary motor area, insula, and cerebellumL. R. Becerra; H. C. Breiter; M. Stojanovic; S. Fishman; A. Edwards; A. R. Comite; R. G. Gonzalez; D. Borsook. Human brain activation under controlled thermal stimulation and habituation to noxious heat: an fMRI study. Magnetic Resonance in Medicine 41(5):1044-57, 1999. PMID: 10332889. WOBIB: 72.
Subcortical activations were found in cerebellum (particularly the vermis) and in the thalamus with the focus in a region comprising the lateral geniculate nucleus, the pulvinar, and adjacent parts of the reticular nucleusClaus Bundesen; Axel Larsen; Soren Kyllingsbaek; Olaf B. Paulson; Ian Law. Attentional effects in the visual pathways: a whole-brain PET study. Experimental Brain Research 147(3):394-406, 2002. PMID: 12428147. DOI: 10.1007/s00221-002-1243-1. WOBIB: 81.
Nodes on this network include the frontal, parietal, and temporal cortices, the thalamus, the anterior and posterior cingulate, the precuneus, and the cerebellumNancy C. Andreasen; D. S. O'Leary; T. Cizadlo; Stephan Arndt; K. Rezai; G. L. Watkins; L. L. Ponto; R. D. Hichwa. II. PET studies of memory: novel versus practiced free recall of word lists. NeuroImage 2(4):296-305, 1995. PMID: 9343614. WOBIB: 85.
Activation of the occipitotemporal and anterior temporal cortex and cerebellum during both emotions agreed well with the earlier findingsS. Aalto; P. Naatanen; E. Wallius; L. Metsahonkala; H. Stenman; P. M. Niem; H. Karlsson. Neuroanatomical substrata of amusement and sadness: a PET activation study using film stimuli. NeuroReport 13(1):67-73, 2002. PMID: 11924897. WOBIB: 88.
Unpleasant was distinguished from neutral or pleasant emotion by activation of the bilateral occipito-temporal cortex and cerebellum, and left parahippocampal gyrus, hippocampus and amygdala (P < 0Richard D. Lane; Eric M. Reiman; M. M. Bradley; P. J. Lang; Geoffrey L. Ahern; Richard J. Davidson; Gary E. Schwartz. Neuroanatomical correlates of pleasant and unpleasant emotion. Neuropsychologia 35(11):1437-44, 1997. PMID: 9352521. BrainMap: 276. WOBIB: 93.
These structures include the contralateral M1/S1 cortex, bilateral S2 and mid-insular cortex, contralateral VP thalamus, medial ipsilateral thalamus, and the vermis and paravermis of the cerebellumK. L. Casey; T. J. Morrow; J. Lorenz; S. Minoshima. Temporal and spatial dynamics of human forebrain activity during heat pain: analysis by positron emission tomography. Journal of Neurophysiology 85(2):951-9, 2001. PMID: 11160525. WOBIB: 95.
Regardless of how the information had been encoded, recognition was associated with increased activation in regions in right prefrontal cortex, left anterior cingulate, and cerebellumL. Nyberg; Endel Tulving; R. Habib; L. G. Nilsson; S. Kapur; S. Houle; Roberto Cabeza; A. R. McIntosh. Functional brain maps of retrieval mode and recovery of episodic information. NeuroReport 7(1):249-52, 1995. PMID: 8742463. WOBIB: 105.
During sleep there was a relative flow increase in the occipital lobes and a relative flow decrease in the bilateral cerebellum, the bilateral posterior parietal cortex, the right premotor cortex and the left thalamusTroels W. Kjaer; Ian Law; Gordon Wiltschiotz; Olaf B. Paulson; Peter L. Madsen. Regional cerebral blood flow during light sleep--a H(2)(15)O-PET study. Journal of Sleep Research 11(3):201-207, 2002. PMID: 12220315. WOBIB: 124.
The rCBF decreases in premotor cortex, thalamus and cerebellum could be indicative of a general decline in preparedness for goal directed action during stage-1 sleepTroels W. Kjaer; Ian Law; Gordon Wiltschiotz; Olaf B. Paulson; Peter L. Madsen. Regional cerebral blood flow during light sleep--a H(2)(15)O-PET study. Journal of Sleep Research 11(3):201-207, 2002. PMID: 12220315. WOBIB: 124.
In an individual patient with prominent coprolalia, such vocal tics were associated with activity in prerolandic and postrolandic language regions, insula, caudate, thalamus, and cerebellum, while activity in sensorimotor cortex was noted with motor ticsE. Stern; D. A. Silbersweig; K. Y. Chee; Andrew Holmes; M. M. Robertson; M. Trimble; Christopher D. Frith; Richard S. J. Frackowiak; Raymond J. Dolan. A functional neuroanatomy of tics in Tourette syndrome. Archives of General Psychiatry 57(8):741-748, 2000. PMID: 10920461. FMRIDCID: . WOBIB: 130.
Focused episodic memory engaged a network that included the medial inferior frontal regions, precuneus/retrosplenial cingulate, anterior cingulate, thalamus, and cerebellumNancy C. Andreasen; Daniel S. O'Leary; Ted Cizadlo; Stephan Arndt; Karim Rezai; G. Leonard Watkins; Laura L. Ponto; Richard D. Hichwa. Remembering the past: two facets of episodic memory explored with positron emission tomography. American Journal of Psychiatry 152(11):1576-1585, 1995. PMID: 7485619. FMRIDCID: . BrainMap: 219. WOBIB: 134.
A categorical analysis (task versus baseline) revealed a significant BOLD increase bilaterally for the dorsolateral prefrontal and inferior parietal cortex and for the cerebellumUlrich Schall; Patrick Johnston; Jim Lagopoulos; Markus Juptner; Walter Jentzen; Renate Thienel; Alexandra Dittmann-Balcar; Stefan Bender; Philip B. Ward. Functional brain maps of Tower of London performance: a positron emission tomography and functional magnetic resonance imaging study. NeuroImage 20(2):1154-61, 2003. PMID: 14568484. DOI: 10.1016/S1053-8119(03)00338-0. FMRIDCID: . WOBIB: 144.
A parametric haemodynamic response model (or regression analysis) confirmed a task-difficulty-dependent increase of BOLD and rCBF for the cerebellum and the left dorsolateral prefrontal cortexUlrich Schall; Patrick Johnston; Jim Lagopoulos; Markus Juptner; Walter Jentzen; Renate Thienel; Alexandra Dittmann-Balcar; Stefan Bender; Philip B. Ward. Functional brain maps of Tower of London performance: a positron emission tomography and functional magnetic resonance imaging study. NeuroImage 20(2):1154-61, 2003. PMID: 14568484. DOI: 10.1016/S1053-8119(03)00338-0. FMRIDCID: . WOBIB: 144.
However, with ketamine, neural responses were demonstrated to neutral expressions in visual cortex, cerebellum and left posterior cingulate gyrusKathryn M. Abel; Matthew P. G. Allin; Katarzyna Kucharska-Pietura; Anthony S. David; Chris Andrew; Steven C. R. Williams; Michael J. Brammer; Mary L. Phillips. Ketamine alters neural processing of facial emotion recognition in healthy men: an fMRI study. NeuroReport 14(3):387-391, 2003. PMID: 12634489. DOI: 10.1097/01.wnr.0000058031.29600.31. FMRIDCID: . WOBIB: 155.
05) of normalized cerebral counts were located in the left sensorimotor cortex (MISI), right motor cortex, left thalamus, right insula, supplementary motor area (SMA), and bilaterally in the primary auditory cortex and the cerebellumMorten Blinkenberg; Christian Bonde; Søren Holm; Claus Svarer; Jimmy Andersen; Olaf B. Paulson; Ian Law. Rate dependence of regional cerebral activation during performance of a repetitive motor task: a PET study. Journal of Cerebral Blood Flow and Metabolism 16(5):794-803, 1996. PMID: 8784224. DOI: 10.1097/00004647-199609000-00004. FMRIDCID: . WOBIB: 166.
Stroop interference was found to activate the left anterior cingulate cortex, the supplementary motor cortex, thalamus, and the cerebellumBarbara Ravnkilde; Poul Videbech; Raben Rosenberg; Albert Gjedde; Anders Gade. Putative Tests of Frontal Lobe Function: A PET-Study of Brain Activation During Stroop's Test and Verbal Fluency. Journal of Clinical and Experimental Neuropsychology 24(4):534-547, 2002. PMID: 12187466. DOI: 10.1076/jcen.24.4.534.1033. FMRIDCID: . WOBIB: 176.
Verbal Fluency activated the left inferior frontal cortex and the left dorsolateral prefrontal cortex, the supplementary motor cortex, the anterior cingulate cortex and the cerebellumBarbara Ravnkilde; Poul Videbech; Raben Rosenberg; Albert Gjedde; Anders Gade. Putative Tests of Frontal Lobe Function: A PET-Study of Brain Activation During Stroop's Test and Verbal Fluency. Journal of Clinical and Experimental Neuropsychology 24(4):534-547, 2002. PMID: 12187466. DOI: 10.1076/jcen.24.4.534.1033. FMRIDCID: . WOBIB: 176.
We found positive correlations between IQ and gray matter density in the orbitofrontal cortex, cingulate gyrus, the cerebellum, and thalamus and negative correlations in the caudate nucleusSophia Frangou; Xavier Chitins; Steven C. R. Williams. Mapping IQ and gray matter density in healty young people. NeuroImage 23(8):800-805, 2004. PMID: 15528081. DOI: 10.1016/j.neuroimage.2004.05.027. FMRIDCID: . WOBIB: 180.

Text count

Bib -> Asymmetry | Author | ICA | NMF | Novelty | Statistics | SVD | Title | WOBIB ]
Roi -> Alphabetic | Hammers | Tzourio-Mazoyer | Svarer | Top | Functional areas | Brodmann areas ]
[ Brede Database ]
Automatically constructed by Brede Toolbox through brede_roi_roi2html, 2006-10-05T15:26:31