WOROI: 22 - Prefrontal cortex
 
Bib -> Asymmetry | Author | ICA | NMF | Novelty | Statistics | SVD | Title | WOBIB ]
 
 
Roi -> Alphabetic | Hammers | Tzourio-Mazoyer | Svarer | Top | Functional areas | Brodmann areas ]
 
 
[ Brede Database ]
 


WOROI: 22 - Prefrontal cortex

The part of cortex in the frontal lobe that is not in the precentral gyrus (Brodmann area 4) and (usually) not in the premotor cortex (Brodmann area 6). This area should not include anterior cingulate. According to NeuroNames the prefrontal cortex (also called the 'frontal region') includes Brodmann areas 8, 9, 10, 11, 44, 45, 46 and 47. The area can also be defined as the area that the mediodorsal nucleus of the thalamus projects to. The Mai atlas (1997) does not index 'prefrontal'.


Variation: Area praefrontalis

External databases

MeSH UID: D017397

Taxonomy

ParentsSiblingsChildren
Cerebral Cortex
Frontal lobe
Prefrontal cortex and anterior cingulate
  Lateral prefrontal cortex
Medial frontal cortex
Brodmann area 9
Orbital gyri
Medial prefrontal cortex
Inferior frontal gyrus
Superior frontal gyrus
Left prefrontal cortex
Right prefrontal cortex
Brodmann area 8
Middle frontal gyrus
Brodmann area 44
Brodmann area 45
Brodmann area 46
Brodmann area 47
Lateral surface of frontal lobe
Orbital surface of frontal lobe
Middle and inferior frontal gyri

Talairach coordinates

  x     y     z   Lobar anatomy WOBIB WOEXP
-2 54 14 Left medial prefrontal cortex 4 9
2 60 11 Right medial prefrontal cortex 4 9
-4 51 0 Left medial prefrontal cortex 4 10
2 56 -4 Right medial prefrontal cortex 4 10
0 64 6 Anterior medial prefrontal cortex 20 54
4 50 -6 Anterior medial prefrontal cortex 20 55
0 53 14 Anterior medial prefrontal cortex 20 56
-10 63 21 Anterior medial prefrontal cortex 20 57
2 59 14 Anterior medial prefrontal cortex 20 58
6 56 32 Anterior medial prefrontal cortex 20 59
-6 60 26 Anterior medial prefrontal cortex 20 60
2 61 15 Anterior medial prefrontal cortex 20 61
0 74 4 Anterior medial prefrontal cortex 20 62
8 64 28 Anterior medial prefrontal cortex 20 63
-8 60 25 Anterior medial prefrontal cortex 20 64
0 53 5 Anterior medial prefrontal cortex 20 65
45 23 -4 Right ventrolateral prefrontal cortex 24 77
-30 26 -4 Left ventrolateral prefrontal cortex 24 77
53 22 24 Dorsolateral prefrontal cortex 24 77
51 13 23 Right inferior prefrontal cortex 40 134
-20 30 44 Left dorsal prefrontal cortex 50 168
-17 27 48 Left dorsal prefrontal cortex 50 169
34 37 37 Right middle frontal gyrus, dorsolateral prefrontal cortex 51 171
-44 24 21 Left prefrontal cortex 54 177
50 34 26 Right prefrontal cortex 54 177
-9 56 8 Medial prefrontal cortex 65 201
-9 64 2 Medial prefrontal cortex 65 202
-4 56 28 Prefrontal cortex 67 206
42 30 32 Right dorsolateral prefrontal cortex 68 211
35 42 15 Right dorsolateral prefrontal cortex 71 223
4 35 33 Right dorso-lateral prefrontal cortex 76 233
46 35 31 Right dorso-lateral prefrontal cortex 76 235
-2 16 12 Medial prefrontal cortex 76 237
61 18 19 Right dorso-lateral prefrontal cortex 76 238
50 31 30 Right dorso-lateral prefrontal cortex 76 238
-4 63 15 Medial prefrontal cortex 78 243
-21 62 16 Anterior left prefrontal cortex, superior frontal gyrus 80 251
48 46 -12 Right ventral anterior prefrontal cortex 80 251
38 36 20 Right dorsolateral prefrontal cortex 82 256
34 52 21 Prefrontal cortex 92 293
-34 32 30 Prefrontal cortex 92 293
22 43 11 Prefrontal cortex 92 293
-6 62 -5 Prefrontal cortex 92 293
-4 52 23 Prefrontal cortex 93 294
-2 52 27 Prefrontal cortex 93 295
-46 48 4 Lateral prefrontal cortex 95 298
22 56 -4 Right dorsolateral prefrontal cortex 96 301
-20 44 -8 Left dorsolateral prefrontal cortex 96 301
-32 31 15 Dorsolateral prefrontal cortex, left 98 305
-6 50 15 Medial prefrontal cortex, left 98 305
46 31 15 Dorsolateral prefrontal cortex, right 98 309
28 30 8 Right prefrontal cortex 105 325
28 30 8 Right prefrontal cortex 105 326
28 24 8 Right prefrontal cortex 105 327
-12 57 2 Left medial prefrontal cortex 116 349
2 58 4 Right medial prefrontal cortex 116 349
-7 63 15 Left medial prefrontal cortex 116 354
-3 50 0 Left medial prefrontal cortex 116 355
1 47 1 Right medial prefrontal cortex 116 359
33 44 16 Prefrontal cortex 118 367
-28 41 29 Prefrontal cortex 118 368
2 60 20 Right mesial prefrontal cortex 119 370
30 38 18 Right prefrontal cortex 122 380
-30 44 20 Left prefrontal cortex 122 380
24 38 24 Right dorsolateral prefrontal cortex 125 387
26 34 22 Right dorsolateral prefrontal cortex 125 388
-38 51 7 Prefrontal cortex 127 392
-34 60 32 Prefrontal cortex 127 392
-42 9 24 Left mid-dorsal lateral prefrontal cortex 141 431
48 13 25 Right mid-dorsal lateral prefrontal cortex 141 431
-48 41 9 Left medial lateral prefrontal cortex 141 431
-32 61 8 Left medial lateral prefrontal cortex 141 431
-44 7 29 Left mid-dorsal lateral prefrontal cortex 141 432
42 9 29 Right mid-dorsal prefrontal cortex 141 432
32 64 -1 Right medial lateral prefrontal cortex 141 432
-32 21 -4 Left ventral lateral prefrontal cortex 141 432
38 27 -8 Right ventral lateral prefrontal cortex 141 432
42 37 31 Right mid-dorsal lateral prefrontal cortex 141 433
0 39 37 Right medial anterior prefrontal cortex 141 433
-14 51 7 Left medial lateral prefrontal cortex 141 433
46 51 12 Right medial lateral prefrontal cortex 141 433
8 18 -16 Posterior ventromedial prefrontal cortex 150 460
-7 46 -11 Anterior ventromedial prefrontal cortex 150 460
3 18 -14 Posterior ventromedial prefrontal cortex 150 461
3 55 -9 Anterior ventromedial prefrontal cortex 150 461
-50 33 -8 Left ventrolateral prefrontal cortex 157 483
6 58 0 Right medial prefrontal cortex 157 483
-6 58 -1 Left medial prefrontal cortex 157 483
-6 59 -2 Left medial prefrontal cortex 157 484
-6 58 16 Left medial prefrontal cortex 157 484
6 58 3 Right medial prefrontal cortex 157 484
-52 29 0 Left ventrolateral prefrontal cortex 157 484
-42 34 7 Left ventrolateral prefrontal cortex 157 485
-6 60 6 Left medial prefrontal cortex 157 486
2 57 4 Right medial prefrontal cortex 157 486
-46 24 17 Left dorsal prefrontal cortex 176 539
28 41 29 Left dorsal prefrontal cortex 176 539
-34 45 16 Left dorsolateral prefrontal cortex 179 562
39 37 22 Right dorsolateral prefrontal cortex 179 562
22 54 -6 Right prefrontal cortex 181 565
-38 29 6 Left prefrontal cortex 181 566
46 31 6 Right prefrontal cortex 181 569
38 7 14 Right prefrontal cortex 181 569
0 43 9 Medial prefrontal cortex 184 579
44 43 13 Right dorsolateral prefrontal cortex 184 580
40 19 -8 Right ventrolateral prefrontal cortex 184 580

Summary

  x     y     z   Description
-21 45 13 Mean coordinate in left hemisphere
27 39 13 Mean coordinate in right hemisphere
23 43 13 Mean coordinate with ignored left/right
0 7 -16 Minimum coordinate with ignored left/right
61 74 48 Maximum coordinate with ignored left/right
18 16 14 Standard deviation with ignored left/right
corner cube of WOROI: 22 - Prefrontal cortex

Text contexts

Functional MRI (fMRI) was used to examine human brain activity within the dorsolateral prefrontal cortex during a sensorimotor task that had been proposed to require selection between several responses, a cognitive concept termed "willed action" in a positron emission tomography (PET) study by Frith et alF. Hyder; E. A. Phelps; C. J. Wiggins; K. S. Labar; A. M. Blamire; R. G. Shulman. "Willed action": a functional MRI study of the human prefrontal cortex during a sensorimotor task. Proc Natl Acad Sci U S A 94(13):6989-6994, 1997. PMID: 9192679. WOBIB: 6.
In the present study, high resolution functional magnetic resonance imaging (fMRI) was used to further localize activity in the prefrontal cortex related to verbal fluencyE. A. Phelps; F. Hyder; A. M. Blamire; R. G. Shulman. FMRI of the prefrontal cortex during overt verbal fluency. NeuroReport 8(2):561-5, 1997. PMID: 9080448. WOBIB: 12.
The overall activity for the group, using a random-effects model, occurred in anterior medial prefrontal cortex (t = 13Sterling C. Johnson; Leslie C. Baxter; Lana S. Wilder; James G. Pipe; Joseph E. Heiserman; George P. Prigatano. Neural correlates of self-reflection. Brain 125(Pt 8):1808-14, 2002. PMID: 12135971. WOBIB: 20.
Awareness of visual verbal stimuli differentially activated medial parietal association cortex (precuneus), which is a polymodal sensory cortex, and dorsolateral prefrontal cortex, which is thought to be primarily executiveTroels W. Kjaer; M. Nowak; K. W. Kjaer; A. R. Lou; H. C. Lou. Precuneus-prefrontal activity during awareness of visual verbal stimuli. Consciousness and cognition 10(3):356-365, 2001. PMID: 11697869. DOI: 10.1006/ccog.2001.0509. WOBIB: 21.
In addition to the temporal lobe activations, there were activation tendencies in the left inferior frontal lobe, right dorsolateral prefrontal cortex, left occipital lobe, and cerebellumK. Hugdahl; K. Bronnick; S. Kyllingsbaek; I. Law; Anders Gade; Olaf B. Paulson. Brain activation during dichotic presentations of consonant-vowel and musical instrument stimuli: a 15O-PET study. Neuropsychologia 37(4):431-40, 1999. PMID: 10215090. WOBIB: 26.
This reaction time effect was accompanied by increases in activity in four regions: the right ventrolateral prefrontal cortex, the supplementary motor area, the left superior parietal lobe, and the left anterior parietal cortexE. Hazeltine; Russell Poldrack; John D. E. Gabrieli. Neural activation during response competition. Journal of Cognitive Neuroscience 12(Supplement 2):118-29, 2000. PMID: 11506652. DOI: 10.1162/089892900563984. FMRIDCID: 2-2000-11173. WOBIB: 40.
Maintenance of orientations involved a distributed fronto-parietal network, that is, left and right lateral superior frontal sulcus (SFSl), bilateral ventrolateral prefrontal cortex (VLPFC), bilateral precuneus, and right superior parietal lobe (SPL)L. Cornette; P. Dupont; E. Salmon; G. A. Orban. The neural substrate of orientation working memory. Journal of Cognitive Neuroscience 13(6):813-28, 2001. PMID: 11564325. DOI: 10.1162/08989290152541476. WOBIB: 51.
In general, the current findings confirm the distinction between maintenance and manipulative processes, highlight the functional heterogeneity in the prefrontal cortex (PFC), and suggest a more dynamic view of WM as a process requiring the coordinated interaction of anatomically distinct brain areasL. Cornette; P. Dupont; E. Salmon; G. A. Orban. The neural substrate of orientation working memory. Journal of Cognitive Neuroscience 13(6):813-28, 2001. PMID: 11564325. DOI: 10.1162/08989290152541476. WOBIB: 51.
The largest cue benefits led to selectively greater activations within the posterior cingulate and medial prefrontal cortexD. M. Small; D. R. Gitelman; M. D. Gregory; A. C. Nobre; T. B. Parrish; M-M Mesulam. The posterior cingulate and medial prefrontal cortex mediate the anticipatory allocation of spatial attention. NeuroImage 18(3):633-41, 2003. PMID: 12667840. WOBIB: 65.
RESULTS: Lower distribution volumes were found in the prefrontal cortex (Brodmann's area 9) of PTSD patients than in comparison subjectsJ. D. Bremner; R. B. Innis; S. M. Southwick; L. Staib; S. Zoghbi; D. S. Charney. Decreased benzodiazepine receptor binding in prefrontal cortex in combat-related posttraumatic stress disorder. American Journal of Psychiatry 157(7):1120-1126, 2000. PMID: 10873921. WOBIB: 67.
CONCLUSIONS: These findings of lower values for the benzodiazepine receptor binding measure of distribution volume are consistent with fewer benzodiazepine receptors and/or reduced affinity of receptor binding in the medial prefrontal cortex in patients with PTSDJ. D. Bremner; R. B. Innis; S. M. Southwick; L. Staib; S. Zoghbi; D. S. Charney. Decreased benzodiazepine receptor binding in prefrontal cortex in combat-related posttraumatic stress disorder. American Journal of Psychiatry 157(7):1120-1126, 2000. PMID: 10873921. WOBIB: 67.
These results further support the proposal that different subregions of the prefrontal cortex subserve different functions during episodic retrievalR. N. Henson; Michael D. Rugg; T. Shallice; R. J. Dolan. Confidence in recognition memory for words: dissociating right prefrontal roles in episodic retrieval. Journal of Cognitive Neuroscience 12(6):913-23, 2000. PMID: 11177413. WOBIB: 80.
Self-generated actions produced activity in a number of motor and premotor areas, including dorsolateral prefrontal cortexS. J. Blakemore; G. Rees; C. D. Frith. How do we predict the consequences of our actions? A functional imaging study. Neuropsychologia 36(6):521-9, 1998. PMID: 9705062. WOBIB: 82.
Pleasant and unpleasant emotions were each distinguished from neutral emotion conditions by significantly increased cerebral blood flow in the vicinity of the medial prefrontal cortex (Brodmann's area 9), thalamus, hypothalamus and midbrain (P < 0Richard D. Lane; Eric M. Reiman; M. M. Bradley; P. J. Lang; Geoffrey L. Ahern; Richard J. Davidson; Gary E. Schwartz. Neuroanatomical correlates of pleasant and unpleasant emotion. Neuropsychologia 35(11):1437-44, 1997. PMID: 9352521. BrainMap: 276. WOBIB: 93.
Negative correlations between regional cerebral blood flow and REM sleep are observed bilaterally, in a vast area of dorsolateral prefrontal cortex, in parietal cortex (supramarginal gyrus) as well as in posterior cingulate cortex and precuneusP. Maquet; J. Peters; J. Aerts; G. Delfiore; C. Degueldre; A. Luxen; G. Franck. Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature 383(6596):163-6, 1996. PMID: 8774879. WOBIB: 96.
We detected signal increase in the right middle temporal gyrus and left prefrontal cortex during presentation of familiar faces, and in several brain regions, including bilateral posterior cingulate gyri, bilateral insulae and right middle occipital cortex during presentation of unfamiliar facesMary L. Phillips; E. T. Bullmore; R. Howard; P. W. Woodruff; I. C. Wright; Steven C. R. Williams; A. Simmons; C. Andrew; M. Brammer; Anthony S. David. Investigation of facial recognition memory and happy and sad facial expression perception: an fMRI study. Psychiatry Research 83(3):127-38, 1998. PMID: 9849722. WOBIB: 98.
It was found that pain increased rCBF in the anterior cingulate, ipsilateral thalamus, prefrontal cortex, and contralateral supplementary motor areaL. J. Adler; F. E. Gyulai; D. J. Diehl; M. A. Mintun; P. M. Winter; L. L. Firestone. Regional brain activity changes associated with fentanyl analgesia elucidated by positron emission tomography. Anesthesia & Analgesia 84(1):120-126, 1997. PMID: 8989012. WOBIB: 101.
During combined pain stimulation and fentanyl administration, fentanyl significantly augmented pain-related rCBF increases in the supplementary motor area and prefrontal cortexL. J. Adler; F. E. Gyulai; D. J. Diehl; M. A. Mintun; P. M. Winter; L. L. Firestone. Regional brain activity changes associated with fentanyl analgesia elucidated by positron emission tomography. Anesthesia & Analgesia 84(1):120-126, 1997. PMID: 8989012. WOBIB: 101.
Significant increases in rCBF to the 43 degrees C stimuli were found in the contralateral ventral posterior thalamus, lenticular nucleus, medial prefrontal cortex (Brodmann's areas 10 and 32), and cerebellar vermisK. L. Casey; S. Minoshima; T. J. Morrow; R. A. Koeppe. Comparison of human cerebral activation pattern during cutaneous warmth, heat pain, and deep cold pain. Journal of Neurophysiology 76(1):571-81, 1996. PMID: 8836245. WOBIB: 102.
Negative correlations were evident in the right superior prefrontal cortex, and the temporoparietal junction, particularly on the right sidePhilip K. McGuire; C. J. Bench; C. D. Frith; I. M. Marks; Richard S. J. Frackowiak; R. J. Dolan. Functional anatomy of obsessive-compulsive phenomena. British Journal of Psychiatry 164(4):459-468, 1994. PMID: 8038933. WOBIB: 104.
Regardless of how the information had been encoded, recognition was associated with increased activation in regions in right prefrontal cortex, left anterior cingulate, and cerebellumL. Nyberg; Endel Tulving; R. Habib; L. G. Nilsson; S. Kapur; S. Houle; Roberto Cabeza; A. R. McIntosh. Functional brain maps of retrieval mode and recovery of episodic information. NeuroReport 7(1):249-52, 1995. PMID: 8742463. WOBIB: 105.
Regions more active in retrieval than encoding included bilateral inferior parietal cortex, bilateral precuneus, right frontal polar cortex, right dorsolateral prefrontal cortex, and right inferior frontal/insular cortexK. B. McDermott; J. G. Ojemann; Steven E. Petersen; J. M. Ollinger; A. Z. Snyder; E. Akbudak; T. E. Conturo; Marcus E. Raichle. Direct comparison of episodic encoding and retrieval of words: an event-related fMRI study. Memory 7(5-6):661-78, 1999. PMID: 10659091. WOBIB: 106.
The right dorsolateral prefrontal cortex demonstrated a significant correlation between rCBF and duration of key-press, possibly reflecting processes over-riding fatigueC. Dettmers; R. N. Lemon; K. M. Stephan; G. R. Fink; Richard S. J. Frackowiak. Cerebral activation during the exertion of sustained static force in man. NeuroReport 7(13):2103-10, 1996. PMID: 8930968. WOBIB: 108.
Our grouped and individual data analyses showed reliable patterns of activation in dorsolateral prefrontal cortex and posterior parietal cortex during performance of the working memory task across all four sitesB. J. Casey; Jonathan D. Cohen; K. O'Craven; Richard J. Davidson; W. Irwin; C. A. Nelson; D. C. Noll; X. Hu; M. J. Lowe; B. R. Rosen; C. L. Truwitt; P. A. Turski. Reproducibility of fMRI results across four institutions using a spatial working memory task. NeuroImage 8(3):249-261, 1998. PMID: 9758739. FMRIDCID: . WOBIB: 116.
However, females had significantly greater activation of the contralateral prefrontal cortex when compared to the males by direct image subtractionP. E. Paulson; S. Minoshima; T. J. Morrow; K. L. Casey. Gender differences in pain perception and patterns of cerebral activation during noxious heat stimulation in humans. Pain 76(1-2):223-9, 1998. PMID: 9696477. WOBIB: 118.
The results from the group analysis documented that permanent amnesia is associated with hypometabolism in the thalamus, posterior cingulate cortex, and mesial prefrontal cortex (near the anterior cingulate gyrus), bilaterally, as well as in the left supramarginal and middle temporal gyriA. M. Aupee; B. Desgranges; F. Eustache; C. Lalevee; V. de la Sayette; F. Viader; J. C. Baron. Voxel-based mapping of brain hypometabolism in permanent amnesia with PET. NeuroImage 13(6 Pt 1):1164-73, 2001. PMID: 11352622. DOI: 10.1006/nimg.2001.0762. WOBIB: 119.
Evaluative judgment produced significant activation in the anterior frontomedian cortex (BA 10/9), the inferior precuneus (BA 23/31), and the left inferior prefrontal cortex (BA 45/47)Stefan Zysset; Oswald Huber; Evelyn Ferstl; D. Y. von Cramon. The anterior frontomedian cortex and evaluative judgment: an fMRI study. NeuroImage 15(4):983-91, 2002. PMID: 11906238. DOI: 10.1006/nimg.2001.1008. WOBIB: 121.
Panic disorder patients who had a panic attack compared to patients who did not have a panic attack at the time of the scan had a decrease in benzodiazepine receptor binding in prefrontal cortexJ. D. Bremner; R. B. Innis; T. White; M. Fujita; D. Silbersweig; A. W. Goddard; L. Staib; E. Stern; A. Cappiello; S. Woods; R. Baldwin; D. S. Charney. SPECT [I-123]iomazenil measurement of the benzodiazepine receptor in panic disorder. Biological Psychiatry 47(2):96-106, 2000. PMID: 10664825. WOBIB: 126.
RESULTS: Brain regions in which activity was significantly correlated with tic occurrence in the group included medial and lateral premotor cortices, anterior cingulate cortex, dorsolateral-rostral prefrontal cortex, inferior parietal cortex, putamen, and caudate, as well as primary motor cortex, the Broca's area, superior temporal gyrus, insula, and claustrumE. Stern; D. A. Silbersweig; K. Y. Chee; Andrew Holmes; M. M. Robertson; M. Trimble; Christopher D. Frith; Richard S. J. Frackowiak; Raymond J. Dolan. A functional neuroanatomy of tics in Tourette syndrome. Archives of General Psychiatry 57(8):741-748, 2000. PMID: 10920461. FMRIDCID: . WOBIB: 130.
Several brain regions identified by monkey studies as being important for successful DNMS performance showed selective activity during the different phases, including the mediodorsal thalamic nucleus (encoding), ventrolateral prefrontal cortex (retention), and perirhinal cortex (retrieval)Greig I. de Zubicaray; Katie McMahon; Stephen J. Wilson; Santhi Muthiah. Brain activity during the encoding, retention, and retrieval of stimulus representations. Learning & Memory 8(5):243-251, 2001. PMID: 11584070. DOI: 10.1101/lm.40301. FMRIDCID: . WOBIB: 141.
A parametric haemodynamic response model (or regression analysis) confirmed a task-difficulty-dependent increase of BOLD and rCBF for the cerebellum and the left dorsolateral prefrontal cortexUlrich Schall; Patrick Johnston; Jim Lagopoulos; Markus Juptner; Walter Jentzen; Renate Thienel; Alexandra Dittmann-Balcar; Stefan Bender; Philip B. Ward. Functional brain maps of Tower of London performance: a positron emission tomography and functional magnetic resonance imaging study. NeuroImage 20(2):1154-61, 2003. PMID: 14568484. DOI: 10.1016/S1053-8119(03)00338-0. FMRIDCID: . WOBIB: 144.
Previous functional brain imaging studies suggest that the ability to infer the intentions and mental states of others (social cognition) is mediated by medial prefrontal cortexT. F. Farrow; Y. Zheng; I. D. Wilkinson; S. A. Spence; J. F. Deakin; N. Tarrier; P. D. Griffiths; P. W. Woodruff. Investigating the functional anatomy of empathy and forgiveness. NeuroReport 12(11):2433-2438, 2001. PMID: 11496124. FMRIDCID: . WOBIB: 147.
In two independent samples of subjects, resting regional cerebral blood flow within the ventromedial prefrontal cortex (VMPFC) correlated with ratings of NADavid H. Zald; Dorothy L. Mattson; Jose V. Pardo. Brain activity in ventromedial prefrontal cortex correlates with individual differences in negative affect. Proc Natl Acad Sci U S A 99(4):2450-2454, 2002. PMID: 11842195. DOI: 10.1073/pnas.042457199. FMRIDCID: . WOBIB: 150.
Thus, we predicted that ketamine would produce reduced activity in limbic and visual brain regions involved in emotion processing, and increased activity in dorsal regions of the prefrontal cortex and cingulate gyrus, both associated with cognitive processing and, putatively, with emotion regulationKathryn M. Abel; Matthew P. G. Allin; Katarzyna Kucharska-Pietura; Anthony S. David; Chris Andrew; Steven C. R. Williams; Michael J. Brammer; Mary L. Phillips. Ketamine alters neural processing of facial emotion recognition in healthy men: an fMRI study. NeuroReport 14(3):387-391, 2003. PMID: 12634489. DOI: 10.1097/01.wnr.0000058031.29600.31. FMRIDCID: . WOBIB: 155.
Results demonstrated that, relative to an emotionally Neutral state, both the Sad and the Happy states were associated with significant loci of activation, bilaterally, in the orbitofrontal cortex, and in the left medial prefrontal cortex, left ventrolateral prefrontal cortex, left anterior temporal pole, and right ponsMario Pelletier; Alain Bouthillier; Johanne Levesque; Serge Carrier; Claude Breault; Vincent Paquette; Boualem Mensour; Jean-Maxime Leroux; Gilles Beaudoin; Pierre Bourgouin; Mario Beauregard. Separate neural circuits for primary emotions? Brain activity during self-induced sadness and happiness in professional actors. NeuroReport 14(8):1111-1116, 2003. PMID: 12821792. DOI: 10.1097/01.wnr.0000075421.59944.69. FMRIDCID: . WOBIB: 157.
Acquisition was associated with activity in the left prefrontal cortex and the retrosplenial area, whereas retrieval was associated with activity in right prefrontal cortex and the precuneusTim Shallice; Paul Fletcher; Chris D. Frith; Paul Grasby; Richard S. J. Frackowiak; Raymond J. Dolan. Brain regions associated with acquisition and retrieval of verbal episodic memory. Nature 368(6472):633-635, 1994. PMID: 8145849. DOI: 10.1038/368633a0. FMRIDCID: . WOBIB: 159.
Verbal Fluency activated the left inferior frontal cortex and the left dorsolateral prefrontal cortex, the supplementary motor cortex, the anterior cingulate cortex and the cerebellumBarbara Ravnkilde; Poul Videbech; Raben Rosenberg; Albert Gjedde; Anders Gade. Putative Tests of Frontal Lobe Function: A PET-Study of Brain Activation During Stroop's Test and Verbal Fluency. Journal of Clinical and Experimental Neuropsychology 24(4):534-547, 2002. PMID: 12187466. DOI: 10.1076/jcen.24.4.534.1033. FMRIDCID: . WOBIB: 176.
RESULTS: Happiness, sadness, and disgust were each associated with increases in activity in the thalamus and medial prefrontal cortex (Brodmann's area 9)Richard D. Lane; Eric M. Reiman; Geoffrey L. Ahern; Gary E. Schwartz; Richard J. Davidson. Neuroanatomical Correlates of Happiness, Sadness, and Disgust. The American Journal of Psychiatry 154(7):926-933, 1997. PMID: 9210742. FMRIDCID: . WOBIB: 177.
Neuroimaging and neuropsychological studies have implicated left inferior prefrontal cortex (LIPC) in both semantic and phonological processingRussell A. Poldrack; Anthony D. Wagner; Matthew W. Prull; John E. Desmond; Gary H. Glover; John D. E. Gabrieli. Functional Specialization for Sematic and Phonological Processing in the Left Inferior Prefrontal Cortex. NeuroImage 10(1):15-35, 1999. PMID: 10385578. DOI: 10.10061/nimg.1999.0441. FMRIDCID: . WOBIB: 178.
Unfair offers elicited activity in brain areas related to both emotion (anterior insula) and cognition (dorsolateral prefrontal cortex)Alan G. Sanfey; James K. Rilling; Jessica A. Aronson; Leigh E. Nystrom; Jonathan D. Cohen. The Neural Basis of Economic decision-Making in the Ultimatum Game. Science 300(5626):1755-1758, 2003. PMID: 12805551. DOI: 10.1126/science.1082976. FMRIDCID: . WOBIB: 179.
Duringimmediate pointingthere was additional activation of left inferior parietal lobule close to the intraparietal sulcus, and when compared withpointing to the previous,dorsolateral prefrontal cortex bilaterallyF. Lacquaniti; Daniela Perani; E. Guigon; V. Bettinardi; M. Carrozzo; F. Grassi; Yves Rossetti; F. Fazio. Visuomotor Transformations for Reaching to Memorized Targets: A PET study. NeuroImage 5(2):129-146, 1997. PMID: 9345543. DOI: 10.1006.nimg.1996.0254. FMRIDCID: . WOBIB: 182.
In particular, the specific activation of intraparietal sulcus and prefrontal cortex inimmediate pointingappears characteristic of a network for visuospatial working memoryF. Lacquaniti; Daniela Perani; E. Guigon; V. Bettinardi; M. Carrozzo; F. Grassi; Yves Rossetti; F. Fazio. Visuomotor Transformations for Reaching to Memorized Targets: A PET study. NeuroImage 5(2):129-146, 1997. PMID: 9345543. DOI: 10.1006.nimg.1996.0254. FMRIDCID: . WOBIB: 182.

Text count

Bib -> Asymmetry | Author | ICA | NMF | Novelty | Statistics | SVD | Title | WOBIB ]
Roi -> Alphabetic | Hammers | Tzourio-Mazoyer | Svarer | Top | Functional areas | Brodmann areas ]
[ Brede Database ]
Automatically constructed by Brede Toolbox through brede_roi_roi2html, 2006-10-05T15:23:58