WOROI: 217 - Premotor cortex
 
Bib -> Asymmetry | Author | ICA | NMF | Novelty | Statistics | SVD | Title | WOBIB ]
 
 
Roi -> Alphabetic | Hammers | Tzourio-Mazoyer | Svarer | Top | Functional areas | Brodmann areas ]
 
 
[ Brede Database ]
 


WOROI: 217 - Premotor cortex

Heimer takes the 'premotor cortical areas' as the 'premotor cortex' (on the lateral aspect of the frontal lobe), the 'supplementary motor area' on the medial and the cingulate motor area.

Abbreviation: PMC

External databases

CoCoMac: DLRPK03-PM GG95-PM GLKR84-PM MH02-PM RTMB99-PM TT93-PM TTNI97-PM GM-PMC

Taxonomy

ParentsSiblingsChildren
Nonprimary motor area
Motor area
  Supplementary motor area
Lateral premotor cortex
Medial premotor
Dorsal premotor cortex
Ventral premotor
Supplementary motor area proper and pre-supplementary motor area

Talairach coordinates

  x     y     z   Functional area WOBIB WOEXP
34 -3 50 Right lateral premotor cortex 23 73
-24 -9 54 Left lateral premotor cortex 23 73
-38 29 43 Left lateral premotor cortex 23 74
28 -7 33 Right premotor cortex 66 204
14 -12 72 Premotor cortex 75 230
0 -10 72 Premotor cortex 75 231
-46 -4 12 Left premotor cortex 84 270
52 -3 42 Motor cortex 90 289
22 -12 41 Premotor cortex 92 293
-16 21 36 Premotor cortex 92 293
-17 -10 58 Premotor cortex 95 298
48 -1 11 Premotor cortex 95 298
-51 -4 38 Premotor 95 299
35 0 26 Premotor cortex, right 98 306
-57 -1 11 Premotor cortex 102 319
55 1 11 Premotor cortex 102 319
-51 -1 9 Premotor cortex 102 320
-46 -8 37 Left lateral premotor cortex 113 345
-60 -1 9 Premotor cortex 118 367
53 -4 14 Premotor cortex 118 367
-53 1 7 Premotor cortex 118 368
-44 -4 7 Premotor cortex 118 368
57 5 9 Premotor cortex 118 368
-26 22 52 Left dorsal premotor cortex 141 431
38 9 55 Right dorsal premotor cortex 141 431
38 10 47 Right dorsal premotor cortex 141 432

Summary

  x     y     z   Description
-41 2 29 Mean coordinate in left hemisphere
39 -1 34 Mean coordinate in right hemisphere
39 0 33 Mean coordinate with ignored left/right
0 -12 7 Minimum coordinate with ignored left/right
60 29 72 Maximum coordinate with ignored left/right
16 10 21 Standard deviation with ignored left/right
corner cube of WOROI: 217 - Premotor cortex

Text contexts

In addition, activation of the left premotor cortex was found during the categorization of artefacts compared with both the categorization of natural objects and object decision to artefactsChristian Gerlach; I. Law; Anders Gade; O. B. Paulson. Categorization and category effects in normal object recognition: a PET study. Neuropsychologia 38(13):1693-703, 2000. PMID: 11099727. WOBIB: 2.
These findings suggest that the structural and semantic stages are dissociable and that the categorization of artefacts, as opposed to the categorization of natural objects, is based, in part, on action knowledge mediated by the left premotor cortexChristian Gerlach; I. Law; Anders Gade; O. B. Paulson. Categorization and category effects in normal object recognition: a PET study. Neuropsychologia 38(13):1693-703, 2000. PMID: 11099727. WOBIB: 2.
Activation of the left ventral premotor cortex (PMv) has in previous imaging studies been associated with the processing of visually presented artefactsChristian Gerlach; I. Law; Anders Gade; O. B. Paulson. The role of action knowledge in the comprehension of artefacts--a PET study. NeuroImage 15(1):143-52, 2002. PMID: 11771982. DOI: 10.1006/nimg.2002.0969. WOBIB: 34.
Structures that are equally active throughout stimulation (contralateral mid-anterior cingulate and premotor cortex) are less likely to mediate these psychophysical changesK. L. Casey; T. J. Morrow; J. Lorenz; S. Minoshima. Temporal and spatial dynamics of human forebrain activity during heat pain: analysis by positron emission tomography. Journal of Neurophysiology 85(2):951-9, 2001. PMID: 11160525. WOBIB: 95.
Some cortical, but not subcortical, structures showed significant or borderline activation only during the early scans (ipsilateral premotor cortex, contralateral perigenual anterior cingulate, lateral prefrontal, and anterior insular cortex); they may mediate pain-related attentive or anticipatory functionsK. L. Casey; T. J. Morrow; J. Lorenz; S. Minoshima. Temporal and spatial dynamics of human forebrain activity during heat pain: analysis by positron emission tomography. Journal of Neurophysiology 85(2):951-9, 2001. PMID: 11160525. WOBIB: 95.
Cortically, rCBF increased in the left anterior and posterior cingulate gyrus, the left primary somatosensory cortex, the left premotor cortex and bilaterally in parietal areasM. Fredrikson; G. Wik; Håkan Fischer; J. Andersson. Affective and attentive neural networks in humans: a PET study of Pavlovian conditioning. NeuroReport 7(1):97-101, 1995. PMID: 8742426. WOBIB: 99.
The ipsilateral premotor cortex and thalamus, and the medial dorsal midbrain and cerebellar vermis, also showed significant rCBF increasesK. L. Casey; S. Minoshima; T. J. Morrow; R. A. Koeppe. Comparison of human cerebral activation pattern during cutaneous warmth, heat pain, and deep cold pain. Journal of Neurophysiology 76(1):571-81, 1996. PMID: 8836245. WOBIB: 102.
Major regional foci of activation were identified (by sinusoidal regression modeling and spatiotemporal randomization tests) in left extrastriate cortex, angular gyrus, supramarginal gyrus, superior and middle temporal gyri, lateral premotor cortex, and Broca's areaE. T. Bullmore; S. Rabe-Hesketh; R. G. Morris; Steven C. R. Williams; L. Gregory; J. A. Gray; M. J. Brammer. Functional magnetic resonance image analysis of a large-scale neurocognitive network. NeuroImage 4(1):16-33, 1996. PMID: 9345494. WOBIB: 113.
Both genders showed a bilateral activation of premotor cortex in addition to the activation of a number of contralateral structures, including the posterior insula, anterior cingulate cortex and the cerebellar vermis, during heat painP. E. Paulson; S. Minoshima; T. J. Morrow; K. L. Casey. Gender differences in pain perception and patterns of cerebral activation during noxious heat stimulation in humans. Pain 76(1-2):223-9, 1998. PMID: 9696477. WOBIB: 118.
During sleep there was a relative flow increase in the occipital lobes and a relative flow decrease in the bilateral cerebellum, the bilateral posterior parietal cortex, the right premotor cortex and the left thalamusTroels W. Kjaer; Ian Law; Gordon Wiltschiotz; Olaf B. Paulson; Peter L. Madsen. Regional cerebral blood flow during light sleep--a H(2)(15)O-PET study. Journal of Sleep Research 11(3):201-207, 2002. PMID: 12220315. WOBIB: 124.
The rCBF decreases in premotor cortex, thalamus and cerebellum could be indicative of a general decline in preparedness for goal directed action during stage-1 sleepTroels W. Kjaer; Ian Law; Gordon Wiltschiotz; Olaf B. Paulson; Peter L. Madsen. Regional cerebral blood flow during light sleep--a H(2)(15)O-PET study. Journal of Sleep Research 11(3):201-207, 2002. PMID: 12220315. WOBIB: 124.
In line with previous studies, a task-difficulty-dependent increase of left-hemispheric rCBF was also detected for the premotor cortex, cingulate, precuneus, and globus pallidusUlrich Schall; Patrick Johnston; Jim Lagopoulos; Markus Juptner; Walter Jentzen; Renate Thienel; Alexandra Dittmann-Balcar; Stefan Bender; Philip B. Ward. Functional brain maps of Tower of London performance: a positron emission tomography and functional magnetic resonance imaging study. NeuroImage 20(2):1154-61, 2003. PMID: 14568484. DOI: 10.1016/S1053-8119(03)00338-0. FMRIDCID: . WOBIB: 144.

Text count

References

  1. Dale Purves, George J. Augustine, David Fitzpatrick, Lawrence C. Katz, Anthony-Samuel LaMantia, James O. McNamara, S. Mark Williams. The Premotor Cortex.
  2. Philip Sabes. The Premotor Cortices - Introduction.


Bib -> Asymmetry | Author | ICA | NMF | Novelty | Statistics | SVD | Title | WOBIB ]
Roi -> Alphabetic | Hammers | Tzourio-Mazoyer | Svarer | Top | Functional areas | Brodmann areas ]
[ Brede Database ]
Automatically constructed by Brede Toolbox through brede_roi_roi2html, 2006-10-05T16:18:55