WOROI: 214 - Motor cortex
 
Bib -> Asymmetry | Author | ICA | NMF | Novelty | Statistics | SVD | Title | WOBIB ]
 
 
Roi -> Alphabetic | Hammers | Tzourio-Mazoyer | Svarer | Top | Functional areas | Brodmann areas ]
 
 
[ Brede Database ]
 


WOROI: 214 - Motor cortex

'Motor cortex' is usually equivalent to primary motor cortex, and does usually not include areas such as premotor areas. NeuroNames takes the motor cortex to consist of the primary motor cortex, the supplementary motor cortex and the premotor cortex.

Abbreviation: MC

External databases

Taxonomy

ParentsSiblingsChildren
Functional area
Motor area
  Primary motor cortex

Talairach coordinates

  x     y     z   Functional area WOBIB WOEXP
3 0 55 Supplementary motor cortex 3 7
34 -29 42 Right primary sensorimotor cortex 23 72
-46 -26 57 Left primary sensorimotor cortex 23 72
34 -3 50 Right lateral premotor cortex 23 73
-24 -9 54 Left lateral premotor cortex 23 73
-38 -23 51 Left primary sensorimotor cortex 23 73
32 -27 40 Right primary sensorimotor cortex 23 73
-38 29 43 Left lateral premotor cortex 23 74
12 -19 45 Right primary sensorimotor cortex, supplementary motor area 48 154
-19 -17 51 Left sensorimotor cortex 48 155
20 -26 42 Right sensorimotor cortex/supplementary motor cortex 48 156
-55 -9 23 Left motor cortex 61 192
55 -11 23 Right motor cortex 61 192
-3 -7 57 Supplementary motor cortex 62 194
28 -7 33 Right premotor cortex 66 204
36 -21 37 Right primary motor cortex 66 204
35 -25 37 Right primary motor cortex 66 204
14 -12 72 Premotor cortex 75 230
0 -10 72 Premotor cortex 75 231
12 -16 50 Supplementary motor cortex 75 232
-53 -21 45 Left primary motor/sensory motor cortex 82 256
-46 -4 12 Left primary motor cortex, supplementary motor area 84 268
-46 -4 12 Left premotor cortex 84 270
52 -3 42 Motor cortex 90 289
22 -12 41 Premotor cortex 92 293
-16 21 36 Premotor cortex 92 293
-17 -10 58 Premotor cortex 95 298
48 -1 11 Premotor cortex 95 298
35 0 26 Premotor cortex, right 98 306
50 0 32 Right motor cortex 101 316
38 -4 52 Right motor cortex 101 316
-57 -1 11 Premotor cortex 102 319
55 1 11 Premotor cortex 102 319
-51 -1 9 Premotor cortex 102 320
-46 -8 37 Left lateral premotor cortex 113 345
-60 -1 9 Premotor cortex 118 367
53 -4 14 Premotor cortex 118 367
-53 1 7 Premotor cortex 118 368
-44 -4 7 Premotor cortex 118 368
57 5 9 Premotor cortex 118 368
4 -3 59 Right supplementary motor cortex 122 380
-40 -22 28 Sensorimotor cortex 130 404
-48 -22 36 Sensorimotor cortex 130 404
-26 22 52 Left dorsal premotor cortex 141 431
38 9 55 Right dorsal premotor cortex 141 431
38 10 47 Right dorsal premotor cortex 141 432
-30 -26 56 Left sensimotor cortex 166 510
52 -10 40 Right primary motor cortex 166 510
-6 -14 44 Supplementary motor cortex 166 510
-4 15 47 Left supplementary motor cortex 176 538
-5 17 59 Left supplementary motor cortex 176 539
-40 8 29 Left supplementary motor cortex 176 539

Summary

  x     y     z   Description
-35 -4 36 Mean coordinate in left hemisphere
34 -8 39 Mean coordinate in right hemisphere
34 -6 38 Mean coordinate with ignored left/right
0 -29 7 Minimum coordinate with ignored left/right
60 29 72 Maximum coordinate with ignored left/right
18 13 18 Standard deviation with ignored left/right
corner cube of WOROI: 214 - Motor cortex

Text contexts

In addition, activation of the left premotor cortex was found during the categorization of artefacts compared with both the categorization of natural objects and object decision to artefactsChristian Gerlach; I. Law; Anders Gade; O. B. Paulson. Categorization and category effects in normal object recognition: a PET study. Neuropsychologia 38(13):1693-703, 2000. PMID: 11099727. WOBIB: 2.
These findings suggest that the structural and semantic stages are dissociable and that the categorization of artefacts, as opposed to the categorization of natural objects, is based, in part, on action knowledge mediated by the left premotor cortexChristian Gerlach; I. Law; Anders Gade; O. B. Paulson. Categorization and category effects in normal object recognition: a PET study. Neuropsychologia 38(13):1693-703, 2000. PMID: 11099727. WOBIB: 2.
We used functional magnetic resonance imaging to examine the representation pattern for repetitive voluntary finger movements in the primary motor cortex (M1) and the supplementary motor area (SMA) of humansI. Indovina; J. N. Sanes. On somatotopic representation centers for finger movements in human primary motor cortex and supplementary motor area. NeuroImage 13(6 Pt 1):1027-34, 2001. PMID: 11352608. DOI: 10.1006/nimg.2001.0776. WOBIB: 11.
Activation of the left ventral premotor cortex (PMv) has in previous imaging studies been associated with the processing of visually presented artefactsChristian Gerlach; I. Law; Anders Gade; O. B. Paulson. The role of action knowledge in the comprehension of artefacts--a PET study. NeuroImage 15(1):143-52, 2002. PMID: 11771982. DOI: 10.1006/nimg.2002.0969. WOBIB: 34.
In the 46 degrees C experiment, positive signal changes were found in the frontal gyri, anterior and posterior cingulate gyrus, thalamus, motor cortex, somatosensory cortex (SI and SII), supplementary motor area, insula, and cerebellumL. R. Becerra; H. C. Breiter; M. Stojanovic; S. Fishman; A. Edwards; A. R. Comite; R. G. Gonzalez; D. Borsook. Human brain activation under controlled thermal stimulation and habituation to noxious heat: an fMRI study. Magnetic Resonance in Medicine 41(5):1044-57, 1999. PMID: 10332889. WOBIB: 72.
Within the primary motor cortex, a hand region was preferentially active in the task in which the stimulus was painful heatP. A. Gelnar; B. R. Krauss; P. R. Sheehe; N. M. Szeverenyi; A. V. Apkarian. A comparative fMRI study of cortical representations for thermal painful, vibrotactile, and motor performance tasks. NeuroImage 10(4):460-82, 1999. PMID: 10493903. DOI: 10.1006/nimg.1999.0482. WOBIB: 75.
Electrodermal activity was positively related to rCBF in the left primary motor cortex (MI, Brodmann's Area 4) and bilaterally in the anterior (Areas 24 and 32) and posterior cingulate cortex (Area 23)M. Fredrikson; T. Furmark; M. T. Olsson; Håkan Fischer; J. Andersson; B. Langstrom. Functional neuroanatomical correlates of electrodermal activity: a positron emission tomographic study. Psychophysiology 35(2):179-85, 1998. PMID: 9529944. WOBIB: 94.
Because results from lesion and stimulation studies in humans converge with the present imaging results, we conclude that the cingulum and the motor cortex, in addition to the parietal and possibly the insular cortex, form part of one or several distributed neural network(s) involved in electrodermal controlM. Fredrikson; T. Furmark; M. T. Olsson; Håkan Fischer; J. Andersson; B. Langstrom. Functional neuroanatomical correlates of electrodermal activity: a positron emission tomographic study. Psychophysiology 35(2):179-85, 1998. PMID: 9529944. WOBIB: 94.
Structures that are equally active throughout stimulation (contralateral mid-anterior cingulate and premotor cortex) are less likely to mediate these psychophysical changesK. L. Casey; T. J. Morrow; J. Lorenz; S. Minoshima. Temporal and spatial dynamics of human forebrain activity during heat pain: analysis by positron emission tomography. Journal of Neurophysiology 85(2):951-9, 2001. PMID: 11160525. WOBIB: 95.
Some cortical, but not subcortical, structures showed significant or borderline activation only during the early scans (ipsilateral premotor cortex, contralateral perigenual anterior cingulate, lateral prefrontal, and anterior insular cortex); they may mediate pain-related attentive or anticipatory functionsK. L. Casey; T. J. Morrow; J. Lorenz; S. Minoshima. Temporal and spatial dynamics of human forebrain activity during heat pain: analysis by positron emission tomography. Journal of Neurophysiology 85(2):951-9, 2001. PMID: 11160525. WOBIB: 95.
Cortically, rCBF increased in the left anterior and posterior cingulate gyrus, the left primary somatosensory cortex, the left premotor cortex and bilaterally in parietal areasM. Fredrikson; G. Wik; Håkan Fischer; J. Andersson. Affective and attentive neural networks in humans: a PET study of Pavlovian conditioning. NeuroReport 7(1):97-101, 1995. PMID: 8742426. WOBIB: 99.
The ipsilateral premotor cortex and thalamus, and the medial dorsal midbrain and cerebellar vermis, also showed significant rCBF increasesK. L. Casey; S. Minoshima; T. J. Morrow; R. A. Koeppe. Comparison of human cerebral activation pattern during cutaneous warmth, heat pain, and deep cold pain. Journal of Neurophysiology 76(1):571-81, 1996. PMID: 8836245. WOBIB: 102.
Cerebral blood flow (CBF) increases just below the threshold for statistical significance were seen in the contralateral sensorimotor cortex [primary motor cortex (M1)/primary somatosensory cortex (S1)]K. L. Casey; S. Minoshima; T. J. Morrow; R. A. Koeppe. Comparison of human cerebral activation pattern during cutaneous warmth, heat pain, and deep cold pain. Journal of Neurophysiology 76(1):571-81, 1996. PMID: 8836245. WOBIB: 102.
Moreover, the subjects' stated preference for either juice or water was not directly correlated with activity in reward regions but instead was correlated with activity in sensorimotor cortexG. S. Berns; Samuel M. McClure; G. Pagnoni; P. R. Montague. Predictability modulates human brain response to reward. Journal of Neuroscience 21(8):2793-8, 2001. PMID: 11306631. WOBIB: 107.
Major regional foci of activation were identified (by sinusoidal regression modeling and spatiotemporal randomization tests) in left extrastriate cortex, angular gyrus, supramarginal gyrus, superior and middle temporal gyri, lateral premotor cortex, and Broca's areaE. T. Bullmore; S. Rabe-Hesketh; R. G. Morris; Steven C. R. Williams; L. Gregory; J. A. Gray; M. J. Brammer. Functional magnetic resonance image analysis of a large-scale neurocognitive network. NeuroImage 4(1):16-33, 1996. PMID: 9345494. WOBIB: 113.
Both genders showed a bilateral activation of premotor cortex in addition to the activation of a number of contralateral structures, including the posterior insula, anterior cingulate cortex and the cerebellar vermis, during heat painP. E. Paulson; S. Minoshima; T. J. Morrow; K. L. Casey. Gender differences in pain perception and patterns of cerebral activation during noxious heat stimulation in humans. Pain 76(1-2):223-9, 1998. PMID: 9696477. WOBIB: 118.
During sleep there was a relative flow increase in the occipital lobes and a relative flow decrease in the bilateral cerebellum, the bilateral posterior parietal cortex, the right premotor cortex and the left thalamusTroels W. Kjaer; Ian Law; Gordon Wiltschiotz; Olaf B. Paulson; Peter L. Madsen. Regional cerebral blood flow during light sleep--a H(2)(15)O-PET study. Journal of Sleep Research 11(3):201-207, 2002. PMID: 12220315. WOBIB: 124.
The rCBF decreases in premotor cortex, thalamus and cerebellum could be indicative of a general decline in preparedness for goal directed action during stage-1 sleepTroels W. Kjaer; Ian Law; Gordon Wiltschiotz; Olaf B. Paulson; Peter L. Madsen. Regional cerebral blood flow during light sleep--a H(2)(15)O-PET study. Journal of Sleep Research 11(3):201-207, 2002. PMID: 12220315. WOBIB: 124.
RESULTS: Brain regions in which activity was significantly correlated with tic occurrence in the group included medial and lateral premotor cortices, anterior cingulate cortex, dorsolateral-rostral prefrontal cortex, inferior parietal cortex, putamen, and caudate, as well as primary motor cortex, the Broca's area, superior temporal gyrus, insula, and claustrumE. Stern; D. A. Silbersweig; K. Y. Chee; Andrew Holmes; M. M. Robertson; M. Trimble; Christopher D. Frith; Richard S. J. Frackowiak; Raymond J. Dolan. A functional neuroanatomy of tics in Tourette syndrome. Archives of General Psychiatry 57(8):741-748, 2000. PMID: 10920461. FMRIDCID: . WOBIB: 130.
In an individual patient with prominent coprolalia, such vocal tics were associated with activity in prerolandic and postrolandic language regions, insula, caudate, thalamus, and cerebellum, while activity in sensorimotor cortex was noted with motor ticsE. Stern; D. A. Silbersweig; K. Y. Chee; Andrew Holmes; M. M. Robertson; M. Trimble; Christopher D. Frith; Richard S. J. Frackowiak; Raymond J. Dolan. A functional neuroanatomy of tics in Tourette syndrome. Archives of General Psychiatry 57(8):741-748, 2000. PMID: 10920461. FMRIDCID: . WOBIB: 130.
In line with previous studies, a task-difficulty-dependent increase of left-hemispheric rCBF was also detected for the premotor cortex, cingulate, precuneus, and globus pallidusUlrich Schall; Patrick Johnston; Jim Lagopoulos; Markus Juptner; Walter Jentzen; Renate Thienel; Alexandra Dittmann-Balcar; Stefan Bender; Philip B. Ward. Functional brain maps of Tower of London performance: a positron emission tomography and functional magnetic resonance imaging study. NeuroImage 20(2):1154-61, 2003. PMID: 14568484. DOI: 10.1016/S1053-8119(03)00338-0. FMRIDCID: . WOBIB: 144.
During active as well as during passive movements of the right elbow there were strong increases in rCBF, identical in location, amount, and extent in the contralateral sensorimotor cortexC. Weiller; M. Juptner; S. Fellows; M. Rijntjes; G. Leonhardt; S. Kiebel; S. Muller; H. C. Diener; A. F. Thilmann. Brain representation of active and passive movements. NeuroImage 4(2):105-110, 1996. PMID: 9345502. FMRIDCID: . WOBIB: 151.
05) of normalized cerebral counts were located in the left sensorimotor cortex (MISI), right motor cortex, left thalamus, right insula, supplementary motor area (SMA), and bilaterally in the primary auditory cortex and the cerebellumMorten Blinkenberg; Christian Bonde; Søren Holm; Claus Svarer; Jimmy Andersen; Olaf B. Paulson; Ian Law. Rate dependence of regional cerebral activation during performance of a repetitive motor task: a PET study. Journal of Cerebral Blood Flow and Metabolism 16(5):794-803, 1996. PMID: 8784224. DOI: 10.1097/00004647-199609000-00004. FMRIDCID: . WOBIB: 166.
Stroop interference was found to activate the left anterior cingulate cortex, the supplementary motor cortex, thalamus, and the cerebellumBarbara Ravnkilde; Poul Videbech; Raben Rosenberg; Albert Gjedde; Anders Gade. Putative Tests of Frontal Lobe Function: A PET-Study of Brain Activation During Stroop's Test and Verbal Fluency. Journal of Clinical and Experimental Neuropsychology 24(4):534-547, 2002. PMID: 12187466. DOI: 10.1076/jcen.24.4.534.1033. FMRIDCID: . WOBIB: 176.
Verbal Fluency activated the left inferior frontal cortex and the left dorsolateral prefrontal cortex, the supplementary motor cortex, the anterior cingulate cortex and the cerebellumBarbara Ravnkilde; Poul Videbech; Raben Rosenberg; Albert Gjedde; Anders Gade. Putative Tests of Frontal Lobe Function: A PET-Study of Brain Activation During Stroop's Test and Verbal Fluency. Journal of Clinical and Experimental Neuropsychology 24(4):534-547, 2002. PMID: 12187466. DOI: 10.1076/jcen.24.4.534.1033. FMRIDCID: . WOBIB: 176.
Compared withvisual detectionthere was activation of primary sensorimotor cortex, ventrolateral precentral gyrus, inferior frontal gyrus in the opercular region, supramarginal gyrus, and middle occipital gyrus, all these sites in the hemisphere (left) contralateral to the moving limb, and cerebellar vermis, during bothimmediate pointingandpointing to the previousF. Lacquaniti; Daniela Perani; E. Guigon; V. Bettinardi; M. Carrozzo; F. Grassi; Yves Rossetti; F. Fazio. Visuomotor Transformations for Reaching to Memorized Targets: A PET study. NeuroImage 5(2):129-146, 1997. PMID: 9345543. DOI: 10.1006.nimg.1996.0254. FMRIDCID: . WOBIB: 182.
Duringpointing to the previous,instead, there was additional activation of supplementary motor cortex, anterior and midcingulate, and inferior occipital gyrus in the left hemisphere; superior parietal lobule, supramarginal gyrus, and posterior hippocampus in the right hemisphere; lingual gyri and cerebellar hemispheres bilaterally; anterior thalamus; and pulvinarF. Lacquaniti; Daniela Perani; E. Guigon; V. Bettinardi; M. Carrozzo; F. Grassi; Yves Rossetti; F. Fazio. Visuomotor Transformations for Reaching to Memorized Targets: A PET study. NeuroImage 5(2):129-146, 1997. PMID: 9345543. DOI: 10.1006.nimg.1996.0254. FMRIDCID: . WOBIB: 182.

Text count

Bib -> Asymmetry | Author | ICA | NMF | Novelty | Statistics | SVD | Title | WOBIB ]
Roi -> Alphabetic | Hammers | Tzourio-Mazoyer | Svarer | Top | Functional areas | Brodmann areas ]
[ Brede Database ]
Automatically constructed by Brede Toolbox through brede_roi_roi2html, 2006-10-05T16:18:00