WOROI: 211 - Perirhinal cortex
 
Bib -> Asymmetry | Author | ICA | NMF | Novelty | Statistics | SVD | Title | WOBIB ]
 
 
Roi -> Alphabetic | Hammers | Tzourio-Mazoyer | Svarer | Top | Functional areas | Brodmann areas ]
 
 
[ Brede Database ]
 


WOROI: 211 - Perirhinal cortex

The perirhinal area is in the hippocampal region and corresponds to Brodmann area 35.

Abbreviation: PRC

Variation: Perirhinal
Variation: Cortex perihinalis
Variation: Perirhinal area
Variation: Area perihinalis

External databases

Taxonomy

ParentsSiblingsChildren
Hippocampal region
Medial temporal lobe
Brodmann area 35
 

Talairach coordinates

  x     y     z   Lobar anatomy WOBIB WOEXP
37 -39 -22 Right perirhinal cortex 77 242
-37 -39 -22 Left perirhinal cortex 77 242
22 -7 -23 Right anterior medial temporal lobe encompassing perirhinal cortex 139 427
18 -31 -7 Right perirhinal cortex 141 433
-30 -5 -30 Left perirhinal cortex 142 434
-24 -7 -28 Left perirhinal cortex 142 436

Summary

  x     y     z   Description
-30 -17 -27 Mean coordinate in left hemisphere
26 -26 -17 Mean coordinate in right hemisphere
28 -22 -22 Mean coordinate with ignored left/right
18 -39 -30 Minimum coordinate with ignored left/right
37 -5 -7 Maximum coordinate with ignored left/right
8 17 8 Standard deviation with ignored left/right
corner cube of WOROI: 211 - Perirhinal cortex

Text contexts

Several brain regions identified by monkey studies as being important for successful DNMS performance showed selective activity during the different phases, including the mediodorsal thalamic nucleus (encoding), ventrolateral prefrontal cortex (retention), and perirhinal cortex (retrieval)Greig I. de Zubicaray; Katie McMahon; Stephen J. Wilson; Santhi Muthiah. Brain activity during the encoding, retention, and retrieval of stimulus representations. Learning & Memory 8(5):243-251, 2001. PMID: 11584070. DOI: 10.1101/lm.40301. FMRIDCID: . WOBIB: 141.
Research with nonhuman primates suggest that these features are structured in a hierarchical system with posterior neurons in the inferior temporal cortex representing simple features and anterior neurons in the perirhinal cortex representing complex conjunctions of features (Bussey & Saksida, 2002; Murray & Bussey, 1999)L. K. Tyler; E. A. Stamatakis; P. Bright; K. Acres; S. Abdallah; J. M. Rodd; H. E. Moss. Processing objects at different levels of specificity. Journal of Cognitive Neuroscience 16(3):351-362, 2004. PMID: 15072671. DOI: 10.1162/089892904322926692. FMRIDCID: . WOBIB: 145.
On this account, the perirhinal cortex plays a crucial role in object identification by integrating information from different sensory systems into more complex polymodal feature conjunctionsL. K. Tyler; E. A. Stamatakis; P. Bright; K. Acres; S. Abdallah; J. M. Rodd; H. E. Moss. Processing objects at different levels of specificity. Journal of Cognitive Neuroscience 16(3):351-362, 2004. PMID: 15072671. DOI: 10.1162/089892904322926692. FMRIDCID: . WOBIB: 145.
In contrast, basic-level naming requires finer-grained discrimination to differentiate between similar objects, and thus should involve anterior temporal regions, including the perirhinal cortexL. K. Tyler; E. A. Stamatakis; P. Bright; K. Acres; S. Abdallah; J. M. Rodd; H. E. Moss. Processing objects at different levels of specificity. Journal of Cognitive Neuroscience 16(3):351-362, 2004. PMID: 15072671. DOI: 10.1162/089892904322926692. FMRIDCID: . WOBIB: 145.
We found that object processing always activated the fusiform gyrus bilaterally, irrespective of the task, whereas the perirhinal cortex was only activated when the task required finer-grained discriminationsL. K. Tyler; E. A. Stamatakis; P. Bright; K. Acres; S. Abdallah; J. M. Rodd; H. E. Moss. Processing objects at different levels of specificity. Journal of Cognitive Neuroscience 16(3):351-362, 2004. PMID: 15072671. DOI: 10.1162/089892904322926692. FMRIDCID: . WOBIB: 145.
Although the participants were unaware of the stimuli, activity in the hippocampus and perirhinal cortex was changed in the experimental versus the control condition; perirhinal activity changes correlated with the reaction time measure of the later nonconscious retrievalKatharina Henke; Christian R. A. Mondadori; Valerie Treyer; Roger M. Nitsch; Alfred Buck; Christoph Hock. Nonconscious formation and reactivation of semantic associations by way of the medial temporal lobe. Neuropsychologia 41(8):863-876, 2003. PMID: 12667523. FMRIDCID: . WOBIB: 152.
Remarkably, activity in the hippocampus and perirhinal cortex was enhanced when subjects were confronted with faces from the experimental versus the control conditionKatharina Henke; Christian R. A. Mondadori; Valerie Treyer; Roger M. Nitsch; Alfred Buck; Christoph Hock. Nonconscious formation and reactivation of semantic associations by way of the medial temporal lobe. Neuropsychologia 41(8):863-876, 2003. PMID: 12667523. FMRIDCID: . WOBIB: 152.
Implicit learning of the sequential regularities of the "hidden rule" activated the ventral perirhinal cortex, within the MTL, whereas learning the fixed stimulus-response associations activated the basal ganglia, indicating that the function of the MTL and the basal ganglia depends on the learned material and not necessarily on the participants' awarenessMichael Rose; Hilde Haider; Cornelius Weiller; Christian Buchel. The Role of Medial Temporal Lobe Structures in Implicit Learning: An Event-Related fMRI Study. Neuron 36(6):1221-1231, 2002. PMID: 12495634. DOI: 10.1016/S0896-6273(02)01105-4. FMRIDCID: . WOBIB: 167.

Text count

Bib -> Asymmetry | Author | ICA | NMF | Novelty | Statistics | SVD | Title | WOBIB ]
Roi -> Alphabetic | Hammers | Tzourio-Mazoyer | Svarer | Top | Functional areas | Brodmann areas ]
[ Brede Database ]
Automatically constructed by Brede Toolbox through brede_roi_roi2html, 2006-10-05T16:17:12