WOROI: 15 - Temporal lobe
 
Bib -> Asymmetry | Author | ICA | NMF | Novelty | Statistics | SVD | Title | WOBIB ]
 
 
Roi -> Alphabetic | Hammers | Tzourio-Mazoyer | Svarer | Top | Functional areas | Brodmann areas ]
 
 
[ Brede Database ]
 


WOROI: 15 - Temporal lobe

Abbreviation: TL

External databases

MeSH UID: D013702
BrainInfo: 107
Wikipedia: Temporal lobe

Taxonomy

ParentsSiblingsChildren
Cerebral Cortex
  Inferior temporal gyrus
Superior temporal gyrus
Lateral temporal cortex
Middle temporal gyrus
Lateral occipito-temporal gyrus
Fusiform gyrus
Medial occipito-temporal gyrus
Left temporal lobe
Right temporal lobe
Posterior temporal lobe
Middle and inferior temporal gyri
Anterior temporal lobe
Transverse temporal gyri
Temporal pole
Medial temporal lobe
Brodmann area 20
Brodmann area 21
Brodmann area 22
Brodmann area 41
Brodmann area 42
Brodmann area 43
Economo-Koskinas area TA
Economo-Koskinas area TB
Economo-Koskinas area TC
Economo-Koskinas area TD
Economo-Koskinas area TE
Economo-Koskinas area TH
Economo-Koskinas area TG
Economo-Koskinas area TI
Economo-Koskinas area TK
Economo-Koskinas area TF
Temporal operculum
Middle temporal area

Talairach coordinates

  x     y     z   Lobar anatomy WOBIB WOEXP
42 -63 29 Right posterior middle temporal lobe 14 37
48 -51 -4 Right occipitotemporal lobe 89 285
48 -60 0 Right occipitotemporal lobe 89 287
22 -7 -23 Right anterior medial temporal lobe encompassing perirhinal cortex 139 427
39 -18 -17 Right medial temporal lobe 167 511
-39 -16 -19 Left medial temporal lobe 167 511
-47 -23 -16 Left temporal lobe 173 530
-49 -19 -18 Left temporal lobe 173 531
49 -15 -18 Right temporal lobe 173 532
51 -33 -12 Right temporal lobe 173 532
47 -55 16 Right temporal lobe 173 532
-25 -27 -10 Left temporal lobe 173 532

Summary

  x     y     z   Description
-40 -21 -16 Mean coordinate in left hemisphere
43 -38 -4 Mean coordinate in right hemisphere
42 -32 -8 Mean coordinate with ignored left/right
22 -63 -23 Minimum coordinate with ignored left/right
51 -7 29 Maximum coordinate with ignored left/right
10 20 16 Standard deviation with ignored left/right
corner cube of WOROI: 15 - Temporal lobe

Text contexts

Concentrating on either the right or left ear stimulus significantly decreased activity bilaterally in the temporal lobes compared to concentrating on both ear stimuli, at the expense of an increased activation in the right posterior and inferior superior parietal lobeK. Hugdahl; Ian Law; S. Kyllingsbaek; K. Bronnick; Anders Gade; Olaf B. Paulson. Effects of attention on dichotic listening: an 15O-PET study. Human Brain Mapping 10(2):87-97, 2000. PMID: 10864233. WOBIB: 14.
For novel stimuli, skilled mirror-reading was associated with decreased activation in the right superior parietal cortex and posterior occipital regions and increased activation in the left inferior temporal lobeRussell A. Poldrack; John E. Desmond; Gary H. Glover; John D. E. Gabrieli. The neural basis of visual skill learning: an fMRI study of mirror reading. Cerebral Cortex 8(1):1-10, 1998. PMID: 9510380. WOBIB: 15.
The CV-syllables resulted in greater neural activation in the left temporal lobe while the musical instruments resulted in greater neural activation in the right temporal lobeK. Hugdahl; K. Bronnick; S. Kyllingsbaek; I. Law; Anders Gade; Olaf B. Paulson. Brain activation during dichotic presentations of consonant-vowel and musical instrument stimuli: a 15O-PET study. Neuropsychologia 37(4):431-40, 1999. PMID: 10215090. WOBIB: 26.
In addition to the temporal lobe activations, there were activation tendencies in the left inferior frontal lobe, right dorsolateral prefrontal cortex, left occipital lobe, and cerebellumK. Hugdahl; K. Bronnick; S. Kyllingsbaek; I. Law; Anders Gade; Olaf B. Paulson. Brain activation during dichotic presentations of consonant-vowel and musical instrument stimuli: a 15O-PET study. Neuropsychologia 37(4):431-40, 1999. PMID: 10215090. WOBIB: 26.
Lesion data showed that patients with language-dominant temporal lobectomy had impairments in their ability to retrieve familiar and newly learned people's names, whereas patients with language-nondominant temporal lobectomy had difficulty retrieving newly learned people's namesTakashi Tsukiura; Toshikatsu Fujii; Reiko Fukatsu; Taisuke Otsuki; Jiro Okuda; Atsushi Umetsu; Kyoko Suzuki; Michio Tabuchi; Isao Yanagawa; Tatsuo Nagasaka; Ryuta Kawashima; Hiroshi Fukuda; Shoki Takahashi; Atsushi Yamadori. Neural basis of the retrieval of people's names: evidence from brain-damaged patients and fMRI. Journal of Cognitive Neuroscience 14(6):922-37, 2002. PMID: 12191459. DOI: 10.1162/089892902760191144. FMRIDCID: 2-2002-112QC. WOBIB: 41.
Deduction activated areas near right brain homologues of left language areas in middle temporal lobe, inferior frontal cortex and basal ganglia, as well as right amygdala, but not spatial-visual areasL. M. Parsons; D. Osherson. New Evidence for Distinct Right and Left Brain Systems for Deductive versus Probabilistic Reasoning. Cerebral Cortex 11(10):954-65, 2001. PMID: 11549618. WOBIB: 47.
Comparing IMPERSONAL with REST (nonautobiographical episodic memory ecphory) resulted in relative rCBF increases symmetrically in both temporal lobes including the temporal poles and medial and superior temporal gyriG. R. Fink; H. J. Markowitsch; M. Reinkemeier; T. Bruckbauer; J. Kessler; W. D. Heiss. Cerebral representation of one's own past: neural networks involved in autobiographical memory. Journal of Neuroscience 16(13):4275-82, 1996. PMID: 8753888. WOBIB: 68.
Increases in activity when the tones were unpredictable were seen in the inferior and superior temporal lobe bilaterally, the right parahippocampal gyrus and right parietal cortexS. J. Blakemore; G. Rees; C. D. Frith. How do we predict the consequences of our actions? A functional imaging study. Neuropsychologia 36(6):521-9, 1998. PMID: 9705062. WOBIB: 82.
Studies of early Alzheimer's disease, temporal lobectomy, and hypoxic amnesia show that hypometabolism of the posterior cingulate cortex is an early and prominent indicator of pathology in these patientsR. J. Maddock; A. S. Garrett; Michael H. Buonocore. Remembering familiar people: the posterior cingulate cortex and autobiographical memory retrieval. Neuroscience 104(3):667-76, 2001. PMID: 11440800. WOBIB: 90.
CONCLUSIONS: This study extends research suggesting that altered 5-HT neuronal system activity persists after recovery from AN and may be related to disturbances of mesial temporal lobe functionGuido K. Frank; Walter H. Kaye; Carolyn C. Meltzer; Julie C. Price; Phil Greer; Claire McConaha; Kelli Skovira. Reduced 5-HT2A receptor binding after recovery from anorexia nervosa. Biological Psychiatry 52(9):896-906, 2002. PMID: 12399143. FMRIDCID: . WOBIB: 131.
By adapting functional magnetic resonance imaging scanning parameters to maximize sensitivity to medial temporal lobe activity, we demonstrate that left perirhinal and hippocampal responses during word list encoding are greater for subsequently recalled than forgotten wordsB. A. Strange; L. J. Otten; Oliver Josephs; Michael D. Rugg; Raymond J. Dolan. Dissociable human perirhinal, hippocampal, and parahippocampal roles during verbal encoding. Journal of Neuroscience 22(2):523-528, 2002. PMID: 11784798. FMRIDCID: . WOBIB: 142.
Functional magnetic resonance imaging (fMRI) was used to examine whether (1) verbal associative encoding activates the medial temporal lobes (MTL) and related regions more than non-associative encoding, (2) verbal associative novelty is related to enhanced MTL activation, and (3) verbal item novelty is related to enhanced MTL activation and, if so, whether these activations are in different or overlapping sitesNicola M. Hunkin; Andrew R. Mayes; Lloyd J. Gregory; Amanda K. Nicholas; Julia A. Nunn; Michael J. Brammer; Edward T. Bullmore; Steven C. R. Williams. Novelty-related activation within the medial temporal lobes. Neuropsychologia 40(8):1456-1464, 2002. PMID: 11931949. FMRIDCID: . WOBIB: 143.
Together, our findings suggest that new semantic associations can be formed and retrieved by way of the medial temporal lobe without awareness of the associations or its components at encoding or any awareness that one is remembering at retrievalKatharina Henke; Christian R. A. Mondadori; Valerie Treyer; Roger M. Nitsch; Alfred Buck; Christoph Hock. Nonconscious formation and reactivation of semantic associations by way of the medial temporal lobe. Neuropsychologia 41(8):863-876, 2003. PMID: 12667523. FMRIDCID: . WOBIB: 152.
We report here significant cerebral blood flow increases at the junction of the inferior frontal and temporal lobes bilaterally, corresponding to the piriform cortex, and unilaterally, in the right orbitofrontal cortexRobert J. Zatorre; Marilyn Jones-Gotman; Alan C. Evans; Ernst Meyer. Functional localization and lateralization of human olfactory cortex. Nature 360(6402):339-340, 1992. PMID: 1448149. DOI: 10.1038/360339a0. FMRIDCID: . WOBIB: 158.
Electrophysiological data obtained from study of the hedgehog, rat, rabbit, dog and monkey indicate that sniffing (whether or not an odorant is present) induces an oscillation of activity in the olfactory bulb, driving the piriform cortex in the temporal lobe, in other words, the piriform is driven by the olfactory bulb at the frequency of sniffingNoam Sobel; V. Prabhakaran; John E. Desmond; Gary H. Glover; R. L. Goode; Edith V. Sullivan; John D. E. Gabrieli. Sniffing and smelling: separate subsystems in the human olfactory cortex. Nature 392(6673):282-286, 1998. PMID: 9521322. DOI: 10.1038/32654. FMRIDCID: . WOBIB: 162.
We find that sniffing, whether odorant is present or absent, induces activation primarily in the piriform cortex of the temporal lobe and in the medial and posterior orbito-frontal gyri of the frontal lobeNoam Sobel; V. Prabhakaran; John E. Desmond; Gary H. Glover; R. L. Goode; Edith V. Sullivan; John D. E. Gabrieli. Sniffing and smelling: separate subsystems in the human olfactory cortex. Nature 392(6673):282-286, 1998. PMID: 9521322. DOI: 10.1038/32654. FMRIDCID: . WOBIB: 162.
The medial temporal lobe (MTL) has been associated with declarative learning of flexible relational rules and the basal ganglia with implicit learning of stimulus-response mappingsMichael Rose; Hilde Haider; Cornelius Weiller; Christian Buchel. The Role of Medial Temporal Lobe Structures in Implicit Learning: An Event-Related fMRI Study. Neuron 36(6):1221-1231, 2002. PMID: 12495634. DOI: 10.1016/S0896-6273(02)01105-4. FMRIDCID: . WOBIB: 167.
The results showed that episodic retrieval task was associated with increased blood flow in right prefrontal and posterior cingulate cortex, as well as with a sustained right-frontopolar-positive ERP, but that the semantic retrieval task was associated with left frontal and temporal lobe activityEmrah Düzel; Roberto Cabeza; Terence W. Picton; Andrew P. Yonelinas; Henning Scheich; Hans-Jochen Heinze; Endel Tulving. Task-related and item-related brain processes of memory retrieval. Proceedings of the National Academy of Science of the United States of America 96(4):1794-1799, 1999. PMID: 9990104. FMRIDCID: . WOBIB: 181.
Retrieval of old items was associated with increased blood flow in the left medial temporal lobe and with a brief late positive ERP componentEmrah Düzel; Roberto Cabeza; Terence W. Picton; Andrew P. Yonelinas; Henning Scheich; Hans-Jochen Heinze; Endel Tulving. Task-related and item-related brain processes of memory retrieval. Proceedings of the National Academy of Science of the United States of America 96(4):1794-1799, 1999. PMID: 9990104. FMRIDCID: . WOBIB: 181.

Text count

Bib -> Asymmetry | Author | ICA | NMF | Novelty | Statistics | SVD | Title | WOBIB ]
Roi -> Alphabetic | Hammers | Tzourio-Mazoyer | Svarer | Top | Functional areas | Brodmann areas ]
[ Brede Database ]
Automatically constructed by Brede Toolbox through brede_roi_roi2html, 2006-10-05T15:22:00