WOROI: 101 - Right
 
Bib -> Asymmetry | Author | ICA | NMF | Novelty | Statistics | SVD | Title | WOBIB ]
 
 
Roi -> Alphabetic | Hammers | Tzourio-Mazoyer | Svarer | Top | Functional areas | Brodmann areas ]
 
 
[ Brede Database ]
 


WOROI: 101 - Right

Abbreviation: D

External databases

Taxonomy

ParentsSiblingsChildren
   Right posterior cingulate gyrus
Right frontal lobe
Right parietal lobe
Right temporal lobe
Right occipital lobe
Right dorsolateral prefrontal cortex
Right prefrontal cortex
Right anterior cingulate gyrus
Right amygdala
Right hippocampus
Right cerebellum
Right thalamus
Right globus pallidus
Right putamen
Right caudate nucleus
Right insula
Right parahippocampal gyrus
Right precentral gyrus
Right gyrus rectus
Right middle cingulate
Right calcarine sulcus
Right cuneus
Right lingual gyrus
Right supplementary motor area
Right hypothalamus
Right cingulate gyrus
Right primary auditory cortex
Right operculum

Talairach coordinates

  x     y     z   Lobar anatomy WOBIB WOEXP
22 -8 8 Right putamen 1 1
20 -20 16 Right thalamus 1 1
8 -86 32 Right cuneus 1 1
50 -63 -7 Right inferior temporal gyrus 2 2
50 -51 -14 Right fusiform gyrus 2 2
32 -67 51 Right precuneus 2 2
30 -72 29 Right precuneus 2 2
50 -32 -24 Right fusiform gyrus 2 2
55 -40 -18 Right fusiform gyrus 2 2
42 -28 -24 Right fusiform gyrus 2 2
48 41 5 Right inferior frontal gyrus 2 2
26 -94 -9 Right inferior occipital gyrus 2 2
30 9 55 Right frontal eye field 3 6
39 26 -9 Right insula 3 6
30 -56 44 Right intraparietal sulcus 3 6
18 -64 56 Right superior parietal lobule 3 6
36 -75 23 Right intraoccipital sulcus 3 6
30 -83 21 Right middle occipital gyrus 3 6
33 -76 -1 Right collateral sulcus 3 6
-15 -82 -9 Right lingual gyrus 3 6
21 -90 10 Right superior occipital gyrus 3 6
42 -61 -4 Right inferior temporo-occipital junction (TO) 3 6
6 -20 9 Right thalamus 3 6
48 -4 39 Right frontal eye field 3 7
56 17 -6 Right insula 3 7
6 -56 50 Right precuneus 3 7
-18 -53 -2 Right parieto-occipital fissure 3 7
18 -53 -2 Right lingual gyrus/anterior calcarine sulcus 3 7
45 2 47 Right frontal eye field 3 8
24 -53 50 Right parietal cortex 3 8
9 -69 15 Right occipital cortex (V1) 3 8
24 -47 -8 Right occipital cortex (lingual) 3 8
42 -75 12 Right occipital cortex (fusiform) 3 8
2 60 11 Right medial prefrontal cortex 4 9
44 19 -18 Right orbitofrontal cortex 4 9
2 21 20 Right cingulate gyrus 4 9
4 -12 10 Right thalamus 4 9
4 -5 -12 Right thalamus 4 9
40 8 -12 Right insular cortex 4 9
20 -4 -5 Right ventral striatum 4 9
14 -9 -15 Right amygdala 4 9
-50 -52 17 Right occipitotemporal cortex 4 9
2 56 -4 Right medial prefrontal cortex 4 10
50 18 -11 Right orbitofrontal cortex 4 10
4 19 18 Right cingulate gyrus 4 10
30 8 -16 Right insular cortex 4 10
16 -5 -3 Right ventral striatum 4 10
18 -2 -17 Right amygdala 4 10
60 -53 14 Right occipitemporal cortex 4 10
41 -69 -10 Right lateral occipital 5 11
33 -44 -18 Right posterior fusiform gyrus 5 11
25 -39 -12 Right anterior collateral sulcus 5 12
22 -96 -9 Right inferior occipital gyrus 7 14
46 -66 -8 Right inferior temporal gyrus 7 14
28 -91 1 Right inferior occipital gyrus 7 14
44 -74 -10 Right inferior temporal gyrus 7 15
57 -23 9 Right Superior temporal gyrus 9 22
16 -78 4 Right occipital lobe 10 23
44 -62 -4 Right fusiform gyrus 10 24
59 -16 -6 Right middle temporal gyrus 10 24
55 -41 39 Right inferior parietal lobule 10 24
24 41 35 Right middle frontal gyrus 10 24
40 -40 46 Right intraparietal sulcus 10 25
36 -60 47 Right intraparietal sulcus 10 25
8 -67 51 Right precuneus 10 25
44 -52 47 Right intraparietal sulcus 10 27
40 -37 42 Right intraparietal sulcus 10 27
32 -60 36 Right intraparietal sulcus 10 27
32 -45 39 Right intraparietal sulcus 10 27
4 -64 47 Right precuneus 10 27
36 -6 0 Right insula 13 34
32 2 8 Right Claustrum 13 34
10 6 48 Medial aspect of right frontal lobe 13 34
46 6 16 Right precentral area 13 34
32 42 20 Lateral aspect of right frontal lobe 13 34
52 -40 20 Right parietal lobe 13 34
12 -20 4 Right thalamus 13 34
30 -76 -28 Right cerebellum 13 34
8 10 48 Medial aspect of right frontal lobe 13 35
40 16 12 Lateral aspect of right frontal lobe 13 35
34 6 4 Right claustrum 13 35
32 16 -4 Right insula 13 35
20 -6 0 Right thalamus 13 35
61 -19 1 Right superior and middle temporal gyrus 14 36
50 -3 -27 Right temporal pole 14 36
42 -63 29 Right posterior middle temporal lobe 14 37
40 -45 24 Right inferior parietal lobe 14 37
8 -48 52 Right Precuneus 14 37
6 -52 54 Right precuneus 14 38
36 -43 28 Right inferior parietal lobe 14 38
6 -44 52 Right precuneus 14 39
22 -60 53 Right precuneus 14 40
57 -24 34 Right inferior parietal lobe 14 40
65 -4 -1 Right central superior and middle temporal gyri 14 41
44 -51 -13 Right cerebellar hemisphere 14 42
32 -40 24 Right posterior insula 14 42
28 -43 -8 Right fusiform gyrus 14 42
44 -16 -4 Right insula 14 43
61 16 3 Right inferior frontal gyrus 14 43
61 0 2 Right superior temporal gyrus 14 43
10 -72 15 Right cuneus 15 44
24 -72 39 Right superior parietal 15 44
19 -72 -10 Right fusiform/lingual gyrus 15 44
23 -72 -35 Right cerebellum 15 44
14 -25 13 Right pulvinar 15 44
22 -41 69 Right superior parietal 15 44
66 -33 16 Right middle/superior temporal 15 44
34 -64 -33 Right cerebellum 15 45
66 -32 15 Right superior temporal 15 45
25 -95 21 Right middle/inferior occipital 15 45
27 -79 -26 Right cerebellum 15 45
31 -56 49 Right superior parietal 15 45
47 -64 40 Right inferior parietal 15 45
58 -41 -15 Right inferior temporal 15 45
50 -72 26 Right superior parietal/occipital 15 46
8 -56 68 Right superior parietal 15 46
66 -25 -9 Right middle/inferior temporal 15 46
18 -79 -4 Right lingual/fusiform gyrus 15 46
19 -25 51 Right superior parietal 15 46
30 -64 33 Right intraparietal 15 46
25 -72 -10 Right cerebellum 15 46
30 -43 -40 Right cerebellum 17 50
36 -48 -31 Right cerebellum 17 50
2 -55 -17 Right cerebellum (vermis) 17 50
2 -43 -5 Right cerebellum (vermis) 17 50
2 -55 -2 Right cerebellum 17 50
2 -34 -25 Right pons 17 50
4 -25 -4 Right mesencephalon (periaqueductal grey matter) 17 50
0 -15 12 Right thalamus 17 50
10 -13 4 Right thalamus 17 50
16 -4 0 Right globus pallidus 17 50
28 23 3 Right anterior insula 17 50
36 5 13 Right anterior insula 17 50
36 -13 8 Right posterior insula 17 50
48 4 9 Right inferior frontal gyrus 17 50
4 -13 60 Right middle frontal gyrus 17 50
10 -14 74 Right middle frontal gyrus 17 50
20 -39 70 Right postcentral gyrus 17 50
55 -28 24 Right supramarginal gyrus 17 50
48 -56 -12 Right fusiform gyrus 18 51
36 -48 -25 Right cerebellum 18 51
58 -36 18 Right insula 19 53
32 -1 7 Right claustrum 19 53
31 22 8 Right insula 19 53
28 17 -16 Right posterolateral orbital cortex 20 65
51 -7 -20 Right inferior temporal gyrus 20 65
24 -73 -28 Right cerebellum 20 65
6 -29 38 Right posterior cingulate gyrus and precuneus 21 66
16 42 -21 Right orbital gyrus 21 66
16 61 6 Right superior frontal gyrus 21 66
38 -87 15 Right medial orbital gyrus 21 190
53 -7 11 Right lateral sulcus 21 190
44 -29 46 Right intraparietal sulcus 23 73
18 -57 32 Right parieto-occipital fissure 23 73
8 -68 -35 Right precuneus 23 73
16 -55 -17 Right cerebellum 23 73
44 -55 32 Right angular gyrus 23 74
2 -46 43 Right precuneus 23 74
40 8 1 Right anterior insula 23 75
33 -58 55 Right superior parietal 24 77
24 -55 64 Right superior parietal 24 77
24 -64 53 Right superior parietal 24 77
39 -38 63 Right intraparietal sulcus 24 77
33 -44 55 Right intraparietal sulcus 24 77
39 -38 52 Right intraparietal sulcus 24 77
-39 -33 46 Right intraparietal sulcus 24 77
45 23 -4 Right ventrolateral prefrontal cortex 24 77
45 7 25 Right inferior area 24 77
9 -14 9 Right medial thalamus 24 77
6 -32 4 Right superior colliculus 24 77
28 -60 47 Right intraparietal sulcus 25 78
32 -77 19 Right middle occipital gyrus 25 78
36 -78 4 Right Inferior occipital gyrus 25 78
48 9 22 Right inferior frontal gyrus 25 78
40 -63 -20 Right posterior cerebellum/fusiform gyrus 25 78
24 -64 47 Right intraparietal sulcus 25 79
32 -77 19 Right middle occipital gyrus 25 79
44 -63 -10 Right fusiform gyrus 25 79
51 9 25 Right inferior frontal gyrus 25 79
44 -1 52 Right precentral gyrus 25 79
24 -64 47 Right intraparietal sulcus 25 80
32 -77 19 Right middle occipital gyrus 25 80
44 -63 -10 Right fusiform gyrus 25 80
48 9 22 Right inferior frontal gyrus 25 80
32 -60 47 Right intraparietal sulcus 25 81
36 -59 -24 Right fusiform gyrus 25 81
28 -64 47 Right intraparietal sulcus 25 82
48 9 22 Right inferior frontal gyrus 25 82
32 -75 -16 Right fusiform gyrus 25 82
32 -77 19 Right middle occipital gyrus 25 82
36 -48 50 Right intraparietal sulcus 25 83
24 -52 54 Right intraparietal sulcus 25 84
32 -44 43 Right inferior parietal lobule/supramarginal gyrus 25 84
24 -52 54 Right intraparietal sulcus 25 85
24 -60 47 Right intraparietal sulcus 25 86
63 -17 3 Right superior temporal gyrus 26 87
32 21 1 Right inferior frontal gyrus 26 87
63 -23 9 Right superior temporal gyrus 26 88
40 24 23 Right dorsolateral temporal gyrus 26 88
26 -84 -8 Right posterior fusiform gyri 28 90
29 -76 28 Right dorsal occipital 28 90
26 -54 44 Right intraparietal sulcus 28 90
38 -80 -10 Right inferior occipital gyri 28 91
40 -51 -13 Right lateral fusiform gyri 28 91
53 -45 11 Right superior temporal gyri 28 91
43 -77 3 Right mid-occipital gyri 28 92
30 -48 -11 Right medial fusiform gyri 28 92
48 -61 -6 Right inferior temporal gyri 28 92
29 -76 36 Right dorsal occipital 28 92
34 -44 53 Right intraparietal sulcus 28 92
27 -86 -7 Right posterior fusiform gyri 28 93
28 -62 -12 Right medial fusiform gyri 28 93
29 -77 38 Right dorsal occipital 28 93
41 -80 -9 Right inferior occipital gyri 28 94
41 -59 -14 Right lateral fusiform gyri 28 94
50 -56 19 Right superior temporal sulci 28 94
41 -87 5 Right mid-occipital gyri 28 95
30 -60 -13 Right medial fusiform gyri 28 95
48 -71 -3 Right inferior temporal gyri 28 95
31 -75 37 Right dorsal occipital gyri 28 95
33 -57 53 Right intraparietal sulci 28 95
38 -61 -7 Right fusiform gyrus 29 96
42 -45 -13 Right fusiform gyrus 29 96
34 -83 6 Right inferior occipital gyrus 29 96
36 -28 -17 Right parahippocampal gyrus 29 96
30 -2 -30 Right limbic lobe 29 96
30 -64 47 Right superior parietal lobe 29 96
44 11 23 Right inferior frontal gyrus 29 96
50 24 14 Right inferior frontal gyrus 29 96
53 -61 -7 Right inferior temporal gyrus 29 97
51 -61 -9 Right inferior temporal gyrus 29 98
55 -53 -14 Right inferior temporal gyrus 29 99
28 -98 -12 Right posterior fusiform gyrus 30 102
34 46 -7 Right middle frontal gyrus 32 109
49 -10 2 Right superior temporal gyrus 32 109
9 -53 14 Right posterior cingulate gyrus 32 109
34 46 -7 Right middle frontal gyrus 32 110
4 -53 14 Right posterior cingulate gyrus 32 110
52 -10 36 Right precentral gyrus 35 116
34 -40 0 Right middle temporal gyrus 35 116
52 -30 20 Right postcentral gyrus 35 117
18 18 52 Right superior frontal gyrus 35 117
46 -68 16 Right middle temporal gyrus 35 117
20 -2 -16 Right entorhinal cortex 35 117
44 14 4 Right inferior frontal gyrus 35 118
50 -10 36 Right precentral gyrus 35 118
50 -32 -4 Right middle temporal temporal 35 118
52 -30 20 Right postcentral gyrus/posterior cingulate gyrus 35 119
44 -70 16 Right middle temporal gyrus 35 119
22 -2 -16 Right entorhinal cortex 35 119
8 12 44 Right anterior cingulate 35 120
44 14 4 Right inferior frontal gyrus 35 120
26 38 -4 Right midfrontal gyrus 35 120
44 28 32 Right midfrontal gyrus 35 120
40 -26 28 Right inferior parietal lobe 35 121
36 -78 -12 Right fusiform gyrus 35 122
36 -46 -16 Right fusiform gyrus 36 123
38 -72 -10 Right lateral occipital cortex 36 123
19 -9 57 Right frontal 37 124
35 -10 57 Right frontal 37 124
41 0 48 Right frontal 37 124
24 7 59 Right frontal 37 124
50 17 32 Right frontal 37 124
31 29 34 Right frontal 37 124
26 40 33 Right frontal 37 124
38 57 9 Right frontal 37 124
7 56 19 Right frontal 37 124
31 47 -2 Right frontal 37 124
58 57 9 Right frontal 37 124
43 -64 41 Right parietal 37 124
60 -22 -5 Right temporal 37 124
14 -4 16 Right subcortical, caudate 37 124
13 17 59 Right frontal 37 125
34 10 57 Right frontal 37 125
52 -4 43 Right frontal 37 125
33 44 28 Right frontal 37 125
48 31 17 Right frontal 37 125
45 -62 46 Right parietal 37 125
57 -51 32 Right parietal 37 125
61 -44 29 Right parietal 37 125
61 -54 0 Right temporal 37 125
15 -4 17 Right subcortical, caudate 37 125
30 -16 -18 Right hippocampus 38 126
30 -20 -12 Right hippocampus 38 127
6 -5 11 Right thalamus 38 127
36 -12 -16 Right hippocampus 38 128
59 -27 47 Right inferior parietal cortex 38 128
24 -74 -35 Right cerebellum 38 129
12 -64 47 Right medial parietal cortex 38 130
55 -35 31 Right inferior parietal lobe 38 130
49 -36 -30 Right cerebellum 38 130
10 13 -4 Right caudate 38 131
14 -38 7 Right posterior cingulate 39 132
48 -10 0 Right planum temporale and insula 39 132
38 -17 -28 Right fusiform 39 132
34 7 17 Right inferior frontal operculum/Insula 39 132
48 0 -28 Right middle temporal 39 132
21 -21 3 Right thalamus 39 132
10 3 10 Right caudate 39 132
58 -55 -24 Right cerebellum 39 132
24 -7 -7 Right amygdala 39 132
7 62 -14 Right orbital frontal 39 133
3 10 62 Right medial frontal 39 133
7 28 28 Right anterior cingulate 39 133
14 -62 -21 Right medial cerebellum 39 133
51 13 23 Right inferior prefrontal cortex 40 134
46 25 32 Right middle frontal gyrus 41 135
59 -61 -2 Right inferior temporal gyrus 41 135
46 20 49 Right middle frontal gyrus 41 138
49 -4 -5 Right superior temporal gyrus 41 138
62 0 6 Right superior temporal gyrus 41 139
7 -66 42 Right precuneus 41 139
14 -71 26 Right cuneus 41 139
42 41 3 Right inferior frontal gyrus 41 140
65 1 11 Right superior temporal gyrus 41 140
7 -70 42 Right precuneus 41 140
37 -40 57 Right anterior parietal 44 147
8 -86 43 Right occipitoparietal 48 153
12 -91 35 Right occipitoparietal 48 154
18 -80 44 Right occipitoparietal 48 155
25 -85 42 Right occipitoparietal 48 156
24 38 28 Right middle frontal gyrus 49 160
4 -78 16 Right cuneus 49 160
12 -10 -20 Right parahippocampal gyrus 49 161
12 42 -12 Right medial frontal cortex 49 162
24 0 -24 Right hippocampal gyrus 49 162
46 -48 44 Right inferior parietal lobule 49 163
22 -72 44 Right superior parietal lobule 49 163
44 4 36 Right precentral gyrus 49 163
26 -84 28 Right superior occipital gyrus 49 163
12 -100 4 Right cuneus 49 163
50 -64 -4 Right inferior temporal gyrus 49 163
12 42 -12 Right medial frontal gyrus 49 165
26 0 -20 Right parahippocampal gyrus 49 165
46 -44 44 Right inferior parietal lobule 49 166
12 -100 4 Right cuneus 49 166
48 -74 -8 Right occipital temporal junction 49 166
54 -48 36 Right inferior parietal lobule 49 167
18 -74 40 Right precuneus 49 167
48 6 36 Right precentral gyrus 49 167
36 -88 -8 Right occipital temporal junction 49 167
9 -53 23 Right posterior cingulate 50 168
61 23 -5 Right inferior frontal gyrus 51 170
51 30 -20 Right inferior frontal gyrus 51 170
42 42 -21 Right inferior frontal gyrus 51 170
24 1 50 Right superior frontal sulcus 51 170
8 19 27 Right anterior cingulate 51 170
22 -67 57 Right superior parietal lobe 51 170
53 -42 52 Right inferior parietal lobe 51 170
34 37 37 Right middle frontal gyrus, dorsolateral prefrontal cortex 51 171
20 5 51 Right superior frontal sulcus 51 171
20 18 41 Right superior frontal sulcus 51 171
12 -50 50 Right precuneus 51 171
22 -63 68 Right superior parietal lobe 51 171
40 -85 6 Right prestriate 52 172
44 9 -6 Right middle insula 54 176
6 34 13 Right anterior cingulate 54 176
14 5 20 Right caudate nucleus (dorsal head) 54 176
26 0 2 Right putamen (medial dorsal) 54 176
36 -29 0 Right posterior hippocampus 54 176
40 -50 -29 Right middle cerebellar peduncle 54 176
26 -35 -30 Right middle cerebellar peduncle 54 176
22 37 41 Right superior frontal gyrus 54 177
4 43 38 Right medial frontal gyrus 54 177
32 22 45 Right middle frontal gyrus 54 177
50 34 26 Right prefrontal cortex 54 177
46 -61 21 Right parallel sulcus/MT gyrus 54 177
40 -60 40 Right intraparietal sulcus 54 177
65 -12 -9 Right temporal cortex, superior gyrus 54 177
65 -29 5 Right temporal cortex 54 177
53 -23 3 Right temporal cortex 54 177
55 1 -29 Right temporal cortex, middle gyrus pole 54 177
8 -37 31 Right posterior cingulate 54 177
4 -49 23 Right posterior cingulate 54 177
22 -9 -18 Right amygdaloid region 54 177
32 13 18 Right anterior insula 56 180
36 -37 35 Right posterior parietal 56 180
24 37 -2 Right orbitofrontal 56 180
32 13 18 Right anterior insula 56 181
36 -37 35 Right posterior parietal 56 181
24 37 -2 Right orbitofrontal 56 181
36 -12 12 Right Mid-/anterior insula 58 184
36 18 4 Right anterior insula 60 186
56 8 -1 Right inferior frontal gyrus 60 186
6 17 29 Right anterior cingulate gyrus 60 186
0 -17 28 Right posterior cingulate gyrus 60 186
24 -59 -20 Right cerebellum 60 186
39 9 7 Right middle insula 60 187
53 9 -3 Right inferior frontal gyrus 60 187
6 20 28 Right anterior cingulate gyrus 60 187
42 19 -6 Right anterior insula 60 188
42 -16 19 Right posterior insula 60 188
56 9 1 Right inferior insula 60 188
9 20 34 Right anterior cingulate gyrus 60 188
36 12 4 Right middle insula 60 189
45 -13 14 Right posterior insula 60 189
56 6 -1 Right inferior gyrus 60 189
3 23 31 Right anterior cingulate gyrus 60 189
6 9 35 Right middle cingulate gyrus 60 189
-30 48 26 Right medial frontal gyrus 60 189
48 -49 25 Right temporal/posterior parietal cortex 61 191
28 -17 1 Right putamen/pallidum 61 192
31 -22 -10 Right hippocampus 63 196
32 -8 -23 Right hippocampus 63 197
42 -61 -15 Right fusiform gyrus 64 198
63 -8 -5 Right superior temporal gyrus 64 199
44 -27 11 Right Heschl's gyrus 64 199
59 16 14 Right inferior frontal gyrus 64 199
2 -52 17 Right retrosplenial cortex 64 200
23 -4 -17 Right amygdala 66 204
8 -39 22 Right retrosplenial cortex 66 205
9 -52 21 Right posterior cingulate cortex 66 205
56 -24 0 Right medial/superior temporal gyrus 68 207
44 0 -12 Right medial/superior temporal gyrus 68 208
4 8 60 Right dorsal/superior frontal gyrus 68 208
4 -54 8 Right posterior cingulate area 68 208
38 6 -12 Right superior temporal gyrus/insula 68 209
42 -4 -16 Right medial temporal gyrus/periamygdaloid 68 209
50 -52 8 Right medial temporal gyrus 68 209
28 18 -4 Right anterior insula 68 209
12 -52 8 Right posterior cingulate area 68 209
18 -64 36 Right medial parietal cortex 68 210
52 -30 36 Right inferior lateral parietal cortex 68 210
50 -60 -12 Right fusiform gyrus 68 210
54 -28 32 Right lateral inferior parietal cortex 68 211
38 -72 -8 Right inferior occipital cortex 68 211
42 30 32 Right dorsolateral prefrontal cortex 68 211
46 -50 36 Right lateral inferior parietal cortex 68 212
22 -86 -12 Right fusiform gyrus 68 212
38 22 -18 Right inferior frontal cortex 70 219
23 8 -7 Right putamen 71 221
29 11 20 Right putamen 71 221
20 -11 -13 Right amygdala 71 221
35 -11 -2 Right anterior-mid insula 71 222
38 -6 4 Right anterior-mid insula 71 222
17 39 9 Right medial frontal cortex 71 222
35 31 9 Right anterior insula 71 223
46 11 9 Right anterior insula 71 223
3 -53 15 Right posterior cingulate gyrus 71 223
35 42 15 Right dorsolateral prefrontal cortex 71 223
29 -75 15 Right parastriate cortex 71 223
26 -31 15 Right thalamus 71 223
46 -28 -2 Right middle temporal cortex 71 223
23 3 9 Right putamen 71 223
38 17 9 Right anterior insula 71 224
6 16 54 Right superior frontal gyrus 73 228
50 20 19 Right inferior frontal gyrus 73 228
48 -8 44 Right precentral gyrus 73 228
25 -20 -12 Right hippocampus 73 228
14 -32 10 Right pulvinar 73 228
14 -55 15 Right precuneus 73 228
35 -65 -30 Right lateral cerebellum 73 228
46 -65 27 Right angular 74 229
48 -69 18 Right superior occipital/angular 74 229
24 -30 60 Right postcentral 74 229
32 -36 57 Right postcentral 74 229
44 -22 32 Right postcentral 74 229
24 -18 62 Right rolando sulcus 74 229
18 -21 8 Right thalamus 76 233
4 35 33 Right dorso-lateral prefrontal cortex 76 233
-24 36 -22 Right orbito-frontal cortex 76 233
24 11 16 Right caudate nucleus 76 233
24 30 -22 Right orbito-frontal cortex 76 234
12 -14 1 Right thalamus 76 235
34 34 -20 Right orbito-frontal cortex 76 235
46 35 31 Right dorso-lateral prefrontal cortex 76 235
50 -54 41 Right inferior parietal lobule 76 235
6 14 9 Right caudate nucleus 76 235
8 33 0 Right anterior cingulate cortex 76 236
18 15 21 Right anterior cingulate cortex 76 236
50 -72 -5 Right extrastriate cortex 76 236
10 -6 4 Right thalamus 76 238
22 32 -22 Right orbito-frontal cortex 76 238
61 18 19 Right dorso-lateral prefrontal cortex 76 238
50 31 30 Right dorso-lateral prefrontal cortex 76 238
14 14 9 Right caudate nucleus 76 238
8 33 4 Right anterior cingulate cortex 76 239
14 21 3 Right caudate nucleus 76 239
12 -8 -17 Right amygdaloid complex 77 241
38 -7 3 Right insular cortex 77 242
47 -63 4 Right parietal cortex 77 242
37 -39 -22 Right perirhinal cortex 77 242
41 10 -11 Right temporal pole 77 242
51 -63 27 Right temporoparietal junction 78 243
42 14 -2 Right frontal inferior gyrus 79 245
60 8 4 Right temporal superior gyrus 79 245
6 3 43 Right anterior cingulate cortex 79 246
53 17 9 Right frontal inferior cortex 79 246
8 -46 34 Right posterior cingulate cortex 79 248
48 46 -12 Right ventral anterior prefrontal cortex 80 251
30 23 -1 Right frontal operculum 81 252
46 -64 -5 Right inferior/middle occipital gyrus 81 253
36 -83 17 Right middle occipital gyrus 81 253
22 -61 55 Right posterior superior parietal lobule 81 253
30 -1 53 Right posterior superior frontal sulcus 81 253
42 3 29 Right middle frontal gyrus/precentral sulcus 81 253
18 -25 5 Right posterior thalamus 81 253
-14 43 0 Left/right anterior cingulate gyri 81 254
4 55 10 Left/right superior frontal gyri 81 254
57 -21 12 Right superior temporal gyrus 81 254
61 -16 -13 Right middle temporal gyrus 81 254
26 -84 -6 Right posterior fusiform gyrus 81 255
26 -52 -21 Right cerebellum 82 256
38 36 20 Right dorsolateral prefrontal cortex 82 256
57 -38 52 Right inferior parietal 82 256
20 35 37 Right medial frontal 82 257
65 -3 -15 Right inferior temporal 82 257
61 -10 -13 Right middle temporal 82 257
40 -19 -24 Right fusiform gyrus 82 257
50 -53 23 Right superior temporal 82 258
44 -25 -2 Right parahippocampal gyrus 82 258
28 -7 -27 Right parahippocampal gyrus 82 258
55 -60 14 Right parietal cortex 82 258
50 -32 -24 Right inferior temporal 82 261
10 -68 -16 Right cerebellum 84 268
24 -4 8 Right basal ganglia (putamen) 84 268
60 -48 16 Right superior temporal gyrus 84 268
48 -34 28 Right inferior parietal lobe 84 268
10 -70 -20 Right cerebellum 84 270
24 -4 8 Right basal ganglia (putamen) 84 270
37 11 6 Right frontal 85 271
35 0 -45 Right anterior inferior temporal 85 271
53 -11 9 Right insula 85 271
30 -66 -42 Right cerebellum 85 271
50 -40 -24 Right posterior inferior temporal 85 272
50 -58 16 Right angular/supramarginal 85 272
56 -44 31 Right parietal 85 272
38 15 3 Right frontal 85 273
40 -69 -45 Right cerebellum 85 273
49 -40 -24 Right posterior inferior temporal 85 274
39 -10 -10 Right insula (inferior) 85 274
44 -66 12 Right angular/supramarginal 85 274
55 -35 24 Right parietal 85 274
7 -64 6 Right precuneus 85 274
20 43 -16 Right anterior inferior frontal 85 275
50 -62 46 Right parietal 85 275
38 -67 -30 Right cerebellum 85 275
53 -8 9 Right posterior inferior frontal 85 276
14 -63 16 Right posterior cingulate 85 276
48 -76 3 Right inferior occipital gyrus 88 279
52 -42 12 Right superior temporal gyrus 88 279
46 -42 -15 Right fusiform gyrus 88 279
54 5 -25 Right middle temporal gyrus 88 279
12 -71 -24 Right cerebellum 88 279
52 -32 44 Right inferior parietal lobule 88 280
46 -52 48 Right inferior parietal lobule 88 280
66 -35 -8 Right middle temporal gyrus 88 280
10 42 -10 Right anterior cingulate 88 280
48 38 6 Right inferior frontal gyrus 88 280
46 44 -6 Right inferior frontal gyrus 88 280
50 -64 8 Right middle temporal gyrus 88 281
64 -14 -3 Right middle temporal gyrus 88 282
52 -38 7 Right middle temporal gyrus 88 282
54 6 -19 Right anterior temporal area 88 282
42 -51 -18 Right superior temporal gyrus 88 282
48 -76 -5 Right middle occipital gyrus 88 282
52 -5 42 Right precentral gyrus 88 282
2 -12 58 Right superior frontal gyrus 88 282
12 -73 -26 Right cerebellum 88 282
64 -30 -14 Right inferior temporal lobule 88 283
50 38 8 Right inferior frontal lobule 88 283
46 40 -4 Right inferior frontal lobule 88 283
56 -32 42 Right inferior parietal lobule 88 283
26 34 -19 Right orbitofrontal lobe 88 283
8 -64 47 Right precuneus 88 283
37 24 -23 Right superior temporal gyrus 88 284
30 -48 56 Right superior parietal lobe 89 285
48 -51 -4 Right occipitotemporal lobe 89 285
48 16 43 Right middle frontal gyrus 89 285
28 2 -2 Right putamen 89 286
24 -24 33 Right deep central sulcus 89 286
2 53 14 Right medial frontal lobe 89 286
10 0 35 Right cingulate gyrus 89 286
44 -66 40 Right superior parietal lobe 89 287
48 -60 0 Right occipitotemporal lobe 89 287
36 -70 35 Right superior occipital gyrus 89 287
28 -2 0 Right putamen 89 288
22 -11 43 Right deep central sulcus 89 288
55 4 37 Right midfrontal 91 291
44 19 40 Right midfrontal 91 291
50 -40 13 Right superior temporal 91 291
50 -60 14 Right midtemporal 91 291
46 -64 3 Right inferior temporal 91 291
30 -49 -4 Right fusiform 91 291
30 -51 -1 Right lingual 91 291
34 -37 -5 Right parahippocampal 91 291
53 -52 43 Right inferior parietal 91 291
51 -57 25 Right inferior parietal 91 291
6 -68 44 Right precuneus 91 291
38 -82 30 Right occipital 91 291
38 -85 15 Right midoccipital 91 291
30 -95 1 Right inferior occipital 91 291
32 37 35 Right midfrontal 91 292
28 40 27 Right midfrontal 91 292
53 34 17 Right midfrontal 91 292
42 43 9 Right midfrontal - inferior frontal 91 292
51 15 25 Right inferior frontal 91 292
48 17 -4 Right inferior frontal 91 292
51 -48 21 Right superior temporal 91 292
63 -47 2 Right midtemporal 91 292
63 -51 -1 Right midtemporal - inferior temporal 91 292
53 -36 -12 Right inferior temporal 91 292
57 -61 -7 Right fusiform 91 292
34 -14 -13 Right hippocampal 91 292
55 -56 43 right inferior parietal 91 292
4 -39 42 Right precuneus 91 292
38 -10 37 Right precentral-postcentral 91 292
32 -82 23 Right midoccipital 91 292
26 -7 8 Right lentiform nucleus 91 292
6 -11 4 Right thalamus 91 292
6 -12 -9 Right midbrain 91 292
48 -67 -10 Right Occipito-temporal cortex 93 295
34 -57 -11 Right cerebellum 93 295
60 -22 16 Right parietal operculum 96 300
16 -4 -12 Right amygdaloid complex 96 300
22 56 -4 Right dorsolateral prefrontal cortex 96 301
48 -46 36 Right parietal cortex 96 301
24 -12 -5 Putamen, right 97 302
33 -56 -9 Gyrus fusiformis, right 97 303
15 -36 40 Gyrus cinguli posterior, right 97 304
58 -31 4 Middle temporal gyrus, right 98 305
14 -50 15 Posterior cingulate gyrus, right 98 306
32 -28 31 Supramarginal gyrus, right 98 306
12 -78 -2 Middle occipital (extrastriate), right 98 306
35 0 20 Insula, right 98 306
14 -56 20 Posterior cingulate gyrus, right 98 307
3 -61 15 Posterior cingulate gyrus, right 98 307
0 29 9 Medial frontal cortex, right/left 98 307
23 -14 9 Putamen, right 98 307
26 -19 9 Putamen, right 98 307
46 31 15 Dorsolateral prefrontal cortex, right 98 309
1 -17 9 Right thalamus 99 310
43 -37 43 Right parietal cortex 99 310
6 -14 4 Right thalamus 101 317
13 -55 33 Right posterior gyrus cinguli 103 321
34 22 -8 Right inferior frontal gyrus 104 323
24 6 -8 Right putamen 104 323
34 -26 -4 Right caudate nucleus 104 323
20 -14 0 Right globus pallidus 104 323
46 22 4 Right inferior frontal gyrus 104 323
16 -16 4 Right thalamus 104 323
32 -72 28 Right posterior middle temporal gyrus 104 324
38 -72 32 Right angular gyrus 104 324
36 20 44 Right middle frontal gyrus 104 324
28 30 8 Right prefrontal cortex 105 325
28 30 8 Right prefrontal cortex 105 326
28 24 8 Right prefrontal cortex 105 327
28 -30 -12 Right parahippocampal cortex 105 328
62 -42 -4 Right middle temporal gyrus 105 328
14 26 -20 Right orbitofrontal cortex 105 328
10 -44 4 Right retrosplenial cortex 105 328
20 34 -12 Right medial orbitofrontal cortex including bilateral nucleus accumbens 107 333
0 15 -7 Right medial orbitofrontal cortex including bilateral nucleus accumbens 107 333
44 -67 -17 Right cerebellum 107 333
16 -75 -20 Right cerebellum 107 333
55 -38 17 Right superior temporal gyrus 107 334
32 15 -14 Right lateral orbitofrontal gyrus 107 334
44 20 10 Right insula 107 336
28 -52 -24 Right cerebellum 107 336
10 -24 52 Right ventral posterior supplementary motor area 108 337
8 -4 36 Right cingulate 108 337
38 -30 32 Right parietal 108 337
50 -24 20 Right posterior operculum 108 337
22 -8 12 Right putamen 108 337
36 -4 12 Right insular cortex 108 337
24 -6 4 Right putamen 108 337
24 -8 0 Right putamen 108 337
55 30 21 Right lateral frontal 110 339
63 20 14 Right lateral frontal 110 339
48 43 9 Right lateral frontal 110 339
40 15 58 Right lateral frontal 110 339
2 27 41 Right medial frontal 110 339
48 -52 49 Right parietal 110 339
40 -91 0 Right occipital 110 339
46 -72 -6 Right occipital 110 339
55 28 23 Right lateral frontal 110 341
44 35 31 Right lateral frontal 110 341
38 6 46 Right lateral frontal 110 341
44 14 56 Right lateral frontal 110 341
24 -99 -2 Right occipital 110 341
-8 -32 -4 Mesolimbic, right inferior frontal gyrus 111 343
43 -53 54 Right parietal 112 344
61 -28 -14 Right temporal 112 344
41 38 41 Right prefrontal 112 344
24 -8 -13 Right amygdala 115 347
28 -5 -13 Right amygdala 115 348
2 58 4 Right medial prefrontal cortex 116 349
44 16 41 Right middle frontal gyrus 116 349
24 -62 38 Right superior parietal lobule 116 349
15 -66 41 Right precuneus 116 349
3 30 40 Right superior frontal gyrus 116 350
1 4 41 Right cingulate gyrus 116 350
44 -10 46 Right precentral gyrus 116 350
3 -4 53 Right medial/superior frontal gyrus 116 350
25 -37 70 Right postcentral gyrus 116 350
4 -57 0 Right cerebellum 116 350
28 -83 -4 Right fusiform gyrus 116 350
25 -81 15 Right middle occipital gyrus 116 351
6 -92 14 Right cuneus 116 351
39 38 25 Right middle frontal gyrus 116 352
42 18 48 Right middle frontal gyrus 116 352
29 11 55 Right middle frontal gyrus 116 352
23 -27 57 Right precentral gyrus 116 352
46 -32 43 Right inferior parietal lobule 116 352
39 -40 60 Right superior parietal lobule 116 352
37 38 21 Right middle frontal gyrus 116 353
31 3 46 Right middle frontal gyrus 116 353
2 13 42 Right cingulate gyrus 116 353
11 -51 45 Right superior parietal lobule 116 353
24 36 33 Right middle frontal gyrus 116 354
9 28 -23 Right orbital frontal gyrus 116 354
25 19 41 Right middle frontal gyrus 116 354
17 -10 -5 Right putamen 116 354
1 -33 29 Right cingulate gyrus 116 354
17 -34 6 Right pulvinar 116 354
10 -47 62 Right superior parietal lobule 116 354
49 -60 29 Right superior temporal gyrus 116 354
17 -52 -15 Right cerebellum 116 354
17 -84 15 Right lingual gyrus 116 354
10 40 50 Right superior frontal gyrus 116 355
29 -5 49 Right superior frontal gyrus 116 355
36 38 27 Right middle frontal gyrus 116 355
29 10 8 Right insular 116 355
30 -6 43 Right precentral gyrus 116 355
12 -48 66 Right precuneus 116 355
4 -50 10 Right posterior cingulate gyrus 116 355
44 -53 35 Right inferior parietal lobule 116 355
25 -60 54 Right superior parietal lobule 116 355
55 -52 -2 Right middle temporal gyrus 116 355
25 -86 -15 Right lingual gyrus 116 355
29 24 63 Right superior frontal gyrus 116 356
21 16 52 Right superior frontal gyrus 116 356
19 13 40 Right anterior cingulate gyrus 116 356
34 -68 -23 Right cerebellum 116 356
38 -53 1 Right fusiform 116 356
22 -74 -12 Right lingual gyrus 116 356
43 -23 37 Right postcentral gyrus 116 357
37 -42 53 Right parietal lobule 116 357
20 -48 -10 Right cerebellum 116 357
25 25 -17 Right orbital frontal gyrus 116 358
17 -55 -25 Right cerebellum 116 358
1 47 1 Right medial prefrontal cortex 116 359
16 26 -8 Right orbital frontal gyrus 116 359
8 22 1 Right caudate nucleus 116 359
38 15 3 Right inferior frontal 116 359
8 7 24 Right cingulate gyrus 116 359
49 -13 33 Right precentral gyrus 116 359
22 -5 1 Right putamen 116 359
2 -4 11 Right thalamus 116 359
46 -23 7 Right superior temporal gyrus 116 359
49 -29 32 Right inferior parietal lobule 116 359
22 -35 73 Right postcentral gyrus 116 359
61 -36 -5 Right inferior temporal gyrus 116 359
32 -58 41 Right inferior parietal lobule 116 359
42 -54 -35 Right cerebellum 116 359
10 -78 31 Right cuneus 116 359
36 -55 5 Right fusiform gyrus 116 360
5 -70 9 Right lingual gyrus 116 360
11 -74 33 Right cuneus 116 360
10 -90 34 Right cuneus 116 361
-4 -17 2 Right thalamus (medio-dorsal nucleus) 119 369
2 -50 16 Right posterior cingulate/retrosplenial cortex 119 370
2 60 20 Right mesial prefrontal cortex 119 370
43 3 29 Right inferior precentral gyrus 121 375
30 -76 35 Right intraparietal sulcus 121 375
39 -78 11 Right superior occipital sulcus 121 375
48 -34 -8 Right fusiform gyrus 121 375
47 29 25 Right middle frontal gyrus 121 377
43 3 29 Right inferior precentral gyrus 121 377
30 -76 35 Right intraparietal sulcus 121 377
48 -34 -8 Right fusiform gyrus 121 377
-25 15 48 Right superior frontal sulcus 121 379
47 29 25 Right middle frontal gyrus 121 379
30 -76 35 Right intraparietal sulcus 121 379
30 38 18 Right prefrontal cortex 122 380
22 -5 8 Right lentiform nucleus 122 380
28 -25 1 Right posterior insula 122 380
46 -63 -25 Right cerebellum 122 380
44 -62 -2 Right middle occipital gyrus 124 385
24 -89 -34 Right cerebellum 124 386
44 -87 -23 Right cerebellum 124 386
51 -5 57 Right superior frontal gyrus 124 386
69 -45 37 Right supramarginal gyrus 124 386
10 12 -2 Right caudate nucleus 125 387
48 -6 0 Right insula 125 387
12 -67 11 Right inferior cuneus 125 387
24 38 24 Right dorsolateral prefrontal cortex 125 387
10 10 -4 Right caudate nucleus 125 388
50 -6 2 Right insula 125 388
12 -67 11 Right inferior cuneus 125 388
26 34 22 Right dorsolateral prefrontal cortex 125 388
-16 -1 18 Right caudate 126 390
34 29 28 Right middle frontal gyrus 126 390
48 -40 9 Right temporoparietal junction 128 393
51 15 34 Right precentral gyrus/frontal lobe 128 393
16 -93 0 Right posterior fusiform 129 394
46 -59 -11 Right temporo-occipital 129 394
20 -97 12 Right inferior and middle occipital 129 394
34 -51 58 Right superior parietal 129 394
40 -65 -15 Right cerebellum 129 394
30 -59 -19 Right cerebellum 129 394
16 -93 0 Right posterior fusiform 129 395
46 -59 -11 Right temporo-occipital 129 395
20 -97 12 Right inferior and middle occipital 129 395
34 -51 58 Right superior parietal 129 395
40 -65 -15 Right cerebellum 129 395
30 -59 -19 Right cerebellum 129 395
50 -25 -4 Right anterior middle temporal 129 395
57 -7 45 Right precentral 129 395
40 11 25 Right inferior frontal sulcus 129 395
16 -93 0 Right posterior fusiform 129 396
46 -59 -11 Right temporo-occipital 129 396
20 -97 12 Right inferior and middle occipital 129 396
34 -51 58 Right superior parietal 129 396
40 -65 -15 Right cerebellum 129 396
30 -59 -19 Right cerebellum 129 396
57 -7 45 Right precentral 129 396
40 11 25 Right inferior frontal sulcus 129 396
50 -25 -4 Right anterior middle temporal 129 398
32 -86 -6 Right posterior fusiform 129 399
44 -66 -3 Right temporo-occipital 129 399
22 -95 12 Right inferior and middle occipital 129 399
63 -30 18 Right superior temporal 129 399
44 3 51 Right precentral 129 399
32 -86 -6 Right posterior fusiform 129 400
44 -66 -3 Right temporo-occipital 129 400
22 -95 12 Right inferior and middle occipital 129 400
65 -28 16 Right superior temporal 129 400
44 3 53 Right precentral 129 400
32 -86 -6 Right posterior fusiform 129 401
44 -66 -3 Right temporo-occipital 129 401
22 -95 12 Right inferior and middle occipital 129 401
65 -30 16 Right superior temporal 129 401
44 3 51 Right precentral 129 401
32 2 -30 Right amygaloid complex 131 405
26 -13 -25 Right subiculum/hippocampus 131 405
55 -39 -11 Right middle temporal gyrus 131 405
24 50 29 Right dorsolateral prefrontal 132 406
14 -77 46 Right medial parietal (precuneus) 132 406
24 50 29 Right dorsolateral prefrontal 132 407
24 50 29 Right dorsolateral prefrontal 132 408
54 4 -19 Right temporal 134 411
35 6 -45 Right planum/Heschl's gyrus 134 411
17 -17 10 Right thalamus 134 411
-9 -57 -18 Bilateral cerebellum (right greater than left) 134 411
18 53 -19 Right inferior frontal 134 412
38 41 -5 Right frontal 134 412
25 3 52 Right frontal 134 412
49 -42 -21 Right inferior posterior temporal 134 412
45 -62 15 Right angular/supramarginal 134 412
51 -38 37 Right parietal 134 412
38 -11 -6 Right insula 134 412
35 -63 -24 Bilateral cerebellum (right greater than left) 134 413
10 38 57 Right frontal 134 414
44 -9 10 Right insula 134 414
50 -39 -24 Right inferior posterior temporal 134 414
47 -60 16 Right angular/supramarginal 134 414
54 -28 4 Right planum/Heschl's gyrus 134 415
18 18 -21 Right inferior frontal 134 416
24 2 50 Right frontal 134 416
52 -43 -21 Right inferior posterior temporal 134 416
6 -60 -12 Right cerebellum 135 417
20 -58 -8 Right fusiform gyrus 135 417
34 -86 -4 Right inferior occipital gyrus 135 417
40 4 4 Right mid-insula 135 417
38 0 24 Right precentral sulcus 135 417
20 -50 48 Right inferior parietal lobe/posterior superior parietal lobe 135 417
4 -82 0 Right lingual gyrus 135 418
16 -80 28 Right cuneus 135 418
18 -6 16 Right putamen 135 418
48 -32 20 Right superior temporal gyrus/inferior parietal lobe 135 418
20 -48 48 Right inferior parietal lobe 135 418
18 -66 48 Right posterior superior parietal lobe 135 418
18 -2 0 Right putamen 135 419
4 -22 12 Right thalamus 135 419
54 -18 12 Right superior temporal gyrus 135 419
28 -8 52 Right precentral sulcus 135 419
6 -11 6 Right thalamus 137 424
2 22 21 Right cingulate cortex 137 424
26 52 -8 Right frontal lobe 137 424
32 10 1 Right insula 137 424
10 -68 37 Right precuneus 138 425
16 -33 46 Right paracentral lobule 138 425
4 -65 29 Right precuneus 138 425
50 50 -3 Right inferior frontal gyrus 138 426
53 44 -7 Right middle frontal gyrus 138 426
32 21 1 Right insula 138 426
55 -32 27 Right inferior parietal lobule 138 426
38 -39 37 Right inferior parietal lobule 138 426
22 -7 -23 Right anterior medial temporal lobe encompassing perirhinal cortex 139 427
48 13 25 Right mid-dorsal lateral prefrontal cortex 141 431
0 -9 12 Left/right medial dorsal thalamus 141 431
16 -5 15 Right caudate tail 141 431
16 21 -8 Right lentiform nucleus 141 431
34 -82 21 Right middle occipital gyrus 141 431
14 -64 7 Right lingual gyrus 141 431
44 -69 -18 Right cerebellum 141 431
42 9 29 Right mid-dorsal prefrontal cortex 141 432
4 38 26 Right 141 432
46 26 19 Right 141 432
32 64 -1 Right medial lateral prefrontal cortex 141 432
38 27 -8 Right ventral lateral prefrontal cortex 141 432
38 -44 52 Right inferior parietal lobule 141 432
6 -93 1 Right lingual gyrus 141 432
34 -76 33 Right superior occipital gyrus 141 432
42 37 31 Right mid-dorsal lateral prefrontal cortex 141 433
0 39 37 Right medial anterior prefrontal cortex 141 433
46 51 12 Right medial lateral prefrontal cortex 141 433
18 -31 -7 Right perirhinal cortex 141 433
40 -50 54 Right superior parietal lobule 141 433
0 -63 57 Right precuneus 141 433
34 -84 24 Right superior occipital gyrus 141 433
12 -94 23 Right cuneus 141 433
38 -80 -13 Right cerebellum 141 433
2 -43 -1 Right 141 433
22 -26 -16 Right entorhinal cortex 142 434
28 -16 -18 Right anterior hippocampus 142 435
38 -66 -8 Right posterior fusiform 142 435
36 -24 -19 Right parahippocampal 142 435
6 -72 15 Right posterior cingulate gyrus 143 439
46 7 35 Right middle frontal gyrus 144 440
49 16 14 Right inferior frontal gyrus 144 440
45 51 14 Right middle frontal gyrus 144 440
58 -31 53 Right postcentral gyrus 144 440
35 -83 -36 Right cerebellum 144 440
25 -63 -37 Right cerebellar tonsils 144 442
42 -82 -12 Right inferior occipital gyrus 145 443
-34 -48 -18 Right fusiform gyrus 145 443
22 -98 -6 Right inferior occipital gyrus 145 443
26 -58 -20 Right fusiform gyrus 145 444
32 -40 -22 Right fusiform gyrus 145 444
32 -90 6 Right middle occipital gyrus 145 444
40 18 40 Right middle frontal gyrus 145 446
30 10 38 Right middle frontal gyrus 145 446
30 -14 -13 Right hippocampus 146 447
24 -14 -13 Right anterior hippocampus 146 448
36 -34 -12 Fundus of the right collateral sulcus 146 449
30 -94 16 Right middle occipital gyrus 147 450
29 -60 -14 Right fusiform gyrus 148 453
31 -81 4 Right middle occipital gyrus 148 453
25 -62 47 Right superior parietal lobule 148 453
53 -21 5 Right superior temporal gyrus 148 454
50 -28 25 Right postcentral gyrus 148 455
54 -42 13 Right temporoparietal junction 148 456
57 -57 2 Right middle temporal gyrus 148 456
43 6 5 Right inferior frontal gyrus 148 456
27 18 10 Right anterior insula 148 456
36 -16 6 Right posterior insula 148 456
41 9 12 Right anterior insula 149 457
29 -10 15 Right posterior insula 149 457
39 -1 -11 Right orbitoinsular junction 149 458
52 -13 40 Right precentral gyrus 149 458
33 -40 59 Right postcentral gyrus 149 458
25 -9 59 Right superior frontal gyrus 149 458
35 -1 -29 Right parahippocampal gyrus 149 459
9 4 28 Right anterior cingulate 149 459
40 13 13 Right anterior insula 149 459
39 4 43 Right middle frontal gyrus 149 459
52 -53 12 Right superior temporal gyrus 149 459
6 -25 38 Right poterior cingulate 152 467
12 38 13 Right anterior cingulate 152 467
38 -14 38 Right precentral gyrus 152 467
42 -19 56 Right pre-/postcentral gyrus 152 467
48 -20 27 Right pre-/postcentral gyrus 152 467
46 -24 34 Right inferior parietal lobe 152 467
50 -69 22 Right angular gyrus 152 467
50 18 10 Right inferior frontal gyrus 152 467
36 25 39 Right middle frontal gyrus 152 467
36 48 27 Right middle frontal gyrus 152 467
51 -15 -19 Right middle temporal gyrus 152 467
63 -37 -12 Right middle temporal gyrus 152 467
61 -31 9 Right superior temporal gyrus 152 467
36 -16 -16 Right hippocampus/perirhinal 152 468
10 -46 -18 Right cerebellum/lingual gyrus 152 468
16 -66 -3 Right lingual gyrus 152 468
36 -17 -19 Right hippocampus/perirhinal 152 469
34 -26 -19 Right perirhinal 152 469
50 -11 -20 Right middle temporal gyrus 152 469
65 -25 1 Right superior temporal gyrus 152 469
24 44 -9 Right orbital gyrus/superior frontal gyrus/medial frontal gyrus/anterior cingulate gyrus 152 469
34 36 28 Right middle frontal gyrus 152 469
26 48 27 Right superior frontal gyrus 152 469
22 43 35 Right superior frontal gyrus 152 469
14 -43 2 Right retrosplenial cortex 152 469
16 -56 36 Right precuneus 152 469
28 0 -3 Right putamen 152 469
48 -68 33 Right angular gyrus 152 469
34 -17 56 Right precentral gyrus 152 469
35 -55 -14 Right fusiform gyrus 153 471
24 0 -16 Right amygdala 153 471
35 -70 -13 Right fusiform gyrus 154 473
29 -84 7 Right middle occipital gyrus 154 473
50 -32 42 Right inferior parietal lobule 154 473
43 -66 4 Right occipito-temporal gyrus 154 473
48 -55 20 Right superior temporal sulcus 154 473
48 30 12 Right inferior frontal gyrus 154 474
56 -21 2 Right superior temporal gyrus 154 474
11 -37 -7 Right cerebellum 155 475
43 -37 20 Right superior temporal gyrus 155 475
21 -60 26 Right precuneus 155 475
40 -26 31 Right inferior parietal lobule 155 476
7 -76 26 Right cuneus 155 478
7 0 20 Right caudate nucleus 155 478
9 -31 -7 Right cerebellum 155 479
3 -58 26 Right precuneus 155 480
24 -7 -14 Right amygdala 156 481
6 58 0 Right medial prefrontal cortex 157 483
36 50 -10 Right orbitofrontal 157 483
2 -33 -26 Right pons 157 483
34 48 -10 Right orbitofrontal 157 484
2 -30 -23 Right pons 157 484
6 58 3 Right medial prefrontal cortex 157 484
4 -26 -13 Right pons 157 485
24 6 -15 Right orbitofrontal 157 485
2 57 4 Right medial prefrontal cortex 157 486
20 6 -15 Right piriform cortex 158 487
17 39 -13 Right orbitofrontal cortex 158 487
21 6 15 Right insula/claustrum 158 487
48 4 -8 Right superior temporal 159 489
2 -22 0 Right thalamus 159 490
26 18 0 Right frontal 159 490
18 28 24 Right frontal 159 490
12 -72 28 Right precuneus 159 490
6 -20 0 Right thalamus 159 491
36 22 10 Anterior portion of the right insular cortex 160 492
34 -44 10 Right middle temporal gyrus 161 493
34 -45 -4 Right fusiform gyrus 161 493
40 -60 5 Right inferior temporal gyrus 161 493
-34 3 15 Right inferior frontal cortex 161 493
26 7 18 Right inferior frontal cortex 161 493
49 -63 3 Right middle temporal gyrus 164 499
49 -56 8 Right middle temporal gyrus 164 499
-46 -25 13 Right superior temporal gyrus 164 499
29 -6 3 Right claustrum 164 500
18 -54 -20 Right cerebellum 166 510
38 14 4 Right insular cortex 166 510
12 -61 61 Right superior parietal 167 511
39 -18 -17 Right medial temporal lobe 167 511
27 0 0 Right basal ganglia 167 512
21 -65 -22 Right cerebellum 167 512
53 38 -2 Right ventro lateral prefrontal 167 513
14 -14 14 Right ventrolateral thalamus 168 515
52 -38 7 Right superior temporal sulcus 168 515
3 -65 27 Right precuneus and cuneus 168 515
52 -34 48 Right inferior parietal 168 515
34 45 20 Right middle frontal gyrus 169 517
50 18 20 Right inferior frontal gyrus 169 517
44 18 -16 Right temporal pole 170 518
4 -64 12 Right posterior cingulate cortex 170 518
44 16 -16 Right temporal pole 170 519
6 -56 16 Right posterior cingulate 170 520
42 -50 24 Right inferior parietal 170 520
36 30 28 Right middle frontal gyrus 170 521
8 -74 36 Right precuneus 170 521
40 -13 15 Right superior temporal gyrus/planum temporale 171 523
6 -65 22 Right precuneus 171 523
32 -49 -4 Right lingual gyrus/parahippocampal 171 523
46 -12 -3 Right superior temporal gyrus 171 523
34 25 -5 Right inferior frontal gyrus/insula 171 524
18 4 7 Right striatum 171 524
65 -38 9 Right superior temporal gyrus 171 524
36 26 6 Right inferior frontal gyrus 171 525
14 8 3 Right striatum 171 526
14 8 3 Right striatum 171 527
49 -55 40 Right parietal lobe 173 530
11 43 44 Right frontal lobe 173 530
17 -7 -18 Right amygdala 173 530
45 -57 34 Right parietal lobe 173 531
5 49 36 Right frontal lobe 173 531
21 -9 -18 Right amygdala 173 531
15 29 48 Right frontal lobe 173 532
39 -11 4 Right insula 173 532
21 55 14 Right frontal lobe 173 532
27 15 -14 Right frontal lobe 173 532
49 -15 -18 Right temporal lobe 173 532
51 -33 -12 Right temporal lobe 173 532
47 -55 16 Right temporal lobe 173 532
12 -12 2 Right thalamus 174 533
0 32 -12 Right medial frontal gyrus 174 533
0 32 -12 Right anterior cingulate gyrus 174 533
28 -82 39 Right occipital lobe 174 533
48 27 -11 Right inferior frontal gyrus 175 534
40 31 43 Right middle frontal gyrus 175 534
20 -71 16 Right cuneus 175 537
3 -21 5 Right thalamus 176 538
0 -54 -30 Right cerebellum 176 538
11 6 54 Right frontal lobe, white matter 176 538
9 36 18 Right cingulate gyrus 176 539
58 30 -2 Right inferior frontal gyrus 176 539
3 -18 12 Right thalamus 176 539
43 -78 -35 Right cerebellum 176 539
17 -68 15 Right cuneus 176 539
38 18 -3 Right insula 176 539
15 -1 -8 Right globus pallidus 176 539
24 51 -6 Right frontal lobe, white matter 176 539
38 50 15 Right middle frontal gyrus 178 550
34 20 0 Right inferior frontal gyrus 178 550
7 60 -18 Right orbitofrontal cortex 178 550
52 8 26 Right inferior frontal gyrus 178 550
43 35 13 Right inferior frontal gyrus 178 550
12 8 12 Right caudate 178 550
38 20 33 Right middle frontal gyrus 178 552
60 8 27 Right inferior frontal gyrus 178 552
30 55 20 Right middle frontal gyrus 178 553
22 60 -10 Right superior frontal gyrus 178 553
33 20 41 Right inferior/middle frontal gyrus 178 555
48 35 7 Right inferior frontal gyrus 178 555
47 8 37 Right inferior frontal gyrus 178 555
41 50 2 Right inferior frontal gyrus 178 555
27 60 5 Right superior frontal gyrus 178 555
39 28 16 Right inferior frontal gyrus 178 556
43 40 12 Right inferior/middle frontal gyrus 178 556
48 16 24 Right inferior frontal gyrus 178 556
12 0 14 Right caudate 178 556
41 55 5 Right middle frontal gyrus 178 556
18 40 43 Right middle/superior forntal gyrus 178 557
49 16 30 Right inferior/middle frontal gyrus 178 558
47 28 -9 Right inferior frontal gyrus 178 558
39 40 -10 Right inferior frontal gyrus 178 558
15 55 -14 Right superior frontal gyrus 178 558
10 8 11 Right caudate 178 558
34 55 7 Right middle frontal gyrus 178 558
32 28 32 Right middle frontal gyrus 178 559
17 40 42 Right superior frontal gyrus 178 560
49 20 -7 Right inferior frontal gyrus 178 560
41 35 -8 Right inferior frontal gyrus 178 560
52 8 39 Right inferior/middle frontal gyrus 178 560
3 16 4 Right caudate/putamen 178 560
32 55 5 Right middle frontal gyrus 178 560
33 28 38 Right middle frontal gyrus 178 561
-37 35 36 Right middle frontal gyrus 178 561
39 40 22 Right middle frontal gyrus 178 561
29 0 61 Right middle frontal gyrus 178 561
8 8 31 Right anterior cingulate 178 561
37 16 9 Right anterior insula 178 561
39 37 22 Right dorsolateral prefrontal cortex 179 562
33 24 34 Right middle frontal gyrus 179 562
35 15 3 Right insula 179 562
30 -48 33 Right superior parietal lobule 179 562
4 -74 5 Right lingual gyrus 179 562
-19 39 -16 Right orbitofrontal cortex 180 563
16 12 13 Right caudate nucleus 180 564
4 -38 24 Right posterior cingulate 181 565
22 54 -6 Right prefrontal cortex 181 565
26 15 -4 Right putamen 181 568
53 6 0 Right temporal cortex 181 568
46 31 6 Right prefrontal cortex 181 569
38 7 14 Right prefrontal cortex 181 569
16 -15 -23 Right medial temporal 181 570
4 31 -2 Right anterior cingulate cortex 181 570
16 -43 -5 Right cerebellar cortex 181 572
24 -38 32 Right inferior parietal lobule 182 574
22 -52 52 Right superior parietal lobule 182 574
12 -38 4 Right hippocampus 182 574
4 -76 -8 Right lingual gyrus 182 574
46 -66 -20 Right cerebellar hemisphere 182 574
40 -20 28 Right inferior parietal lobule 182 575
20 -48 52 Right superior parietal lobule 182 575
12 -38 4 Right hippocampus 182 575
6 -78 -8 Right lingual gyrus 182 575
28 -52 -24 Right cerebellar hemisphere 182 575
14 36 48 Right superior/middle frontal gyri 182 576
52 -24 8 Right superior temporal gyrus 182 576
17 -72 31 Right superior occipital gyrus 183 578
40 -56 43 Right posterior parietal cortex 184 580
44 43 13 Right dorsolateral prefrontal cortex 184 580
40 19 -8 Right ventrolateral prefrontal cortex 184 580
24 48 -12 Right lateral orbitofrontal cortex 184 580
50 -68 20 Right middle temporal gyrus 185 585
58 -48 24 Right subramarginal gyrus 185 585
8 -66 24 Right precuneus 185 585
3 28 43 Right superior frontal 186 586

Summary

  x     y     z   Description
-25 -11 8 Mean coordinate in left hemisphere
32 -22 13 Mean coordinate in right hemisphere
32 -21 13 Mean coordinate with ignored left/right
0 -100 -45 Minimum coordinate with ignored left/right
69 64 74 Maximum coordinate with ignored left/right
17 40 24 Standard deviation with ignored left/right
corner cube of WOROI: 101 - Right

Text contexts

The object decision tasks were associated with activation of areas involved in structural processing (fusiform gyri, right inferior frontal gyrus)Christian Gerlach; I. Law; Anders Gade; O. B. Paulson. Categorization and category effects in normal object recognition: a PET study. Neuropsychologia 38(13):1693-703, 2000. PMID: 11099727. WOBIB: 2.
Both regions showed a greater number of activated voxels on the right, consistent with the known pattern of right hemispheric dominance for spatial attentionDarren R. Gitelman; Todd B. Parrish; Karl J. Friston; M-Marsel Mesulam. Functional anatomy of visual search: regional segregations within the frontal eye fields and effective connectivity of the superior colliculus. NeuroImage 15(4):970-82, 2002. PMID: 11906237. DOI: 10.1006/nimg.2001.1006. WOBIB: 3.
An analysis of effective connectivity demonstrated that the search-dependent variance in the activity of the superior colliculus was significantly influenced by the activity in a network of cortical regions including the right frontal eye fields and bilateral parietal and occipital corticesDarren R. Gitelman; Todd B. Parrish; Karl J. Friston; M-Marsel Mesulam. Functional anatomy of visual search: regional segregations within the frontal eye fields and effective connectivity of the superior colliculus. NeuroImage 15(4):970-82, 2002. PMID: 11906237. DOI: 10.1006/nimg.2001.1006. WOBIB: 3.
Evidence in favor of this interpretation comes from the additional finding that activation of the anterior part of the left fusiform gyrus and a more anterior part of the right inferior temporal gyrus, areas previously associated with access to stored structural knowledge, was found with recognizable stimuli, but not with unrecognizable stimuliChristian Gerlach; C. T. Aaside; G. W. Humphreys; Anders Gade; O. B. Paulson; I. Law. Brain activity related to integrative processes in visual object recognition: bottom-up integration and the modulatory influence of stored knowledge. Neuropsychologia 40(8):1254-67, 2002. PMID: 11931928. WOBIB: 7.
When compared to the first-person perspective, the third-person perspective recruited right inferior parietal, precuneus, posterior cingulate and frontopolar cortexP. Ruby; Jean Decety. Effect of subjective perspective taking during simulation of action: a PET investigation of agency. Nature Neuroscience 4(5):546-50, 2001. PMID: 11319565. DOI: 10.1038/87510. WOBIB: 8.
We suggest that the right inferior parietal, precuneus and somatosensory cortex are specifically involved in distinguishing self-produced actions from those generated by othersP. Ruby; Jean Decety. Effect of subjective perspective taking during simulation of action: a PET investigation of agency. Nature Neuroscience 4(5):546-50, 2001. PMID: 11319565. DOI: 10.1038/87510. WOBIB: 8.
Previous positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) studies show that during attentive listening, processing of phonetic information is associated with higher activity in the left auditory cortex than in the right auditory cortex while the opposite is true for musical informationM. Tervaniemi; S. V. Medvedev; K. Alho; S. V. Pakhomov; M. S. Roudas; T. L. Van Zuijen; R. Naatanen. Lateralized automatic auditory processing of phonetic versus musical information: a PET study. Human Brain Mapping 10(2):74-79, 2000. PMID: 10864231. WOBIB: 9.
When sound sequences consisted of intermixed frequent and infrequent sounds, automatic phonetic processing was lateralized to the left hemisphere and musical to the right hemisphereM. Tervaniemi; S. V. Medvedev; K. Alho; S. V. Pakhomov; M. S. Roudas; T. L. Van Zuijen; R. Naatanen. Lateralized automatic auditory processing of phonetic versus musical information: a PET study. Human Brain Mapping 10(2):74-79, 2000. PMID: 10864231. WOBIB: 9.
The bilateral extrastriate cortices and a left precentral region were more activated during verbal than during Arabic stimulation, while the right fusiform gyrus and a set of bilateral inferoparietal and frontal regions were more activated during Arabic than during verbal stimulationP. Pinel; S. Dehaene; D. Riviere; D. LeBihan. Modulation of parietal activation by semantic distance in a number comparison task. NeuroImage 14(5):1013-26, 2001. PMID: 11697933. DOI: 10.1006/nimg.2001.0913. WOBIB: 10.
Healthy right-handed participants performed repetitive individuated flexion-extension movements of digits 1, 2, and 3 using the dominant handI. Indovina; J. N. Sanes. On somatotopic representation centers for finger movements in human primary motor cortex and supplementary motor area. NeuroImage 13(6 Pt 1):1027-34, 2001. PMID: 11352608. DOI: 10.1006/nimg.2001.0776. WOBIB: 11.
The subjects were instructed to either concentrate on the stimuli presented in both ears, or only on the left or right ear stimulusK. Hugdahl; Ian Law; S. Kyllingsbaek; K. Bronnick; Anders Gade; Olaf B. Paulson. Effects of attention on dichotic listening: an 15O-PET study. Human Brain Mapping 10(2):87-97, 2000. PMID: 10864233. WOBIB: 14.
Concentrating on either the right or left ear stimulus significantly decreased activity bilaterally in the temporal lobes compared to concentrating on both ear stimuli, at the expense of an increased activation in the right posterior and inferior superior parietal lobeK. Hugdahl; Ian Law; S. Kyllingsbaek; K. Bronnick; Anders Gade; Olaf B. Paulson. Effects of attention on dichotic listening: an 15O-PET study. Human Brain Mapping 10(2):87-97, 2000. PMID: 10864233. WOBIB: 14.
For novel stimuli, skilled mirror-reading was associated with decreased activation in the right superior parietal cortex and posterior occipital regions and increased activation in the left inferior temporal lobeRussell A. Poldrack; John E. Desmond; Gary H. Glover; John D. E. Gabrieli. The neural basis of visual skill learning: an fMRI study of mirror reading. Cerebral Cortex 8(1):1-10, 1998. PMID: 9510380. WOBIB: 15.
On the left side, activation of the middle frontal gyrus, superior frontal gyrus, superior precentral gyrus, thalamus and the caudal part of the anterior cingulate gyrus was seen, while on the right side we found activation in the supramarginal gyrus, mesencephalon and insulaS. Nour; Claus Svarer; J. K. Kristensen; O. B. Paulson; I. Law. Cerebral activation during micturition in normal men. Brain 123 ( Pt 4):781-9, 2000. PMID: 10734009. WOBIB: 17.
09) without correction for multiple comparisons, we found additional activation in the medial pontine tegmentum, mesencephalon, right thalamus, right middle frontal gyrus and left insulaS. Nour; Claus Svarer; J. K. Kristensen; O. B. Paulson; I. Law. Cerebral activation during micturition in normal men. Brain 123 ( Pt 4):781-9, 2000. PMID: 10734009. WOBIB: 17.
fMRI regions that correlated with the amplitude of the P300 wave were supramarginal gyri, thalamus, insula and right medial frontal gyrus, and are presumably sources of the P300 waveSilvina Horovitz; Pawel Skudlarski; John Gore. Correlations and dissociations between BOLD signal and P300 amplitude in an auditory oddball task: a parametric approach to combining fMRI and ERP. Magnetic Resonance Imaging 20(4):319, 2002. PMID: 12165350. WOBIB: 19.
Whole-head functional magnetic resonance imaging was applied to nine healthy right-handed subjects while they were performing three different mental rotation tasks and two visual control tasksK. Jordan; H. J. Heinze; K. Lutz; M. Kanowski; L. Jancke. Cortical activations during the mental rotation of different visual objects. NeuroImage 13(1):143-52, 2001. PMID: 11133317. DOI: 10.1006/nimg.2000.0677. WOBIB: 25.
The CV-syllables resulted in greater neural activation in the left temporal lobe while the musical instruments resulted in greater neural activation in the right temporal lobeK. Hugdahl; K. Bronnick; S. Kyllingsbaek; I. Law; Anders Gade; Olaf B. Paulson. Brain activation during dichotic presentations of consonant-vowel and musical instrument stimuli: a 15O-PET study. Neuropsychologia 37(4):431-40, 1999. PMID: 10215090. WOBIB: 26.
The changes in neural activation were closely mimicked by the performance data which showed a right ear superiority in response accuracy for the CV-syllables, and a left ear superiority for the musical instrumentsK. Hugdahl; K. Bronnick; S. Kyllingsbaek; I. Law; Anders Gade; Olaf B. Paulson. Brain activation during dichotic presentations of consonant-vowel and musical instrument stimuli: a 15O-PET study. Neuropsychologia 37(4):431-40, 1999. PMID: 10215090. WOBIB: 26.
In addition to the temporal lobe activations, there were activation tendencies in the left inferior frontal lobe, right dorsolateral prefrontal cortex, left occipital lobe, and cerebellumK. Hugdahl; K. Bronnick; S. Kyllingsbaek; I. Law; Anders Gade; Olaf B. Paulson. Brain activation during dichotic presentations of consonant-vowel and musical instrument stimuli: a 15O-PET study. Neuropsychologia 37(4):431-40, 1999. PMID: 10215090. WOBIB: 26.
In the PET data, the increase in task difficulty was associated with increased regional cerebral blood flow in the posterior part of the right inferior temporal gyrus and in the anterior part of the right fusiform gyrusChristian Gerlach; I. Law; Anders Gade; O. B. Paulson. Perceptual differentiation and category effects in normal object recognition: a PET study. Brain 122 ( Pt 11):2159-70, 1999. PMID: 10545400. WOBIB: 29.
Natural objects also recruited larger parts of the right inferior temporal and anterior fusiform gyri compared with artefacts as task difficulty increasedChristian Gerlach; I. Law; Anders Gade; O. B. Paulson. Perceptual differentiation and category effects in normal object recognition: a PET study. Brain 122 ( Pt 11):2159-70, 1999. PMID: 10545400. WOBIB: 29.
Specifically, recall of previously memorized words from temporal cues was associated with activity in the basal forebrain, right middle frontal gyrus, right superior temporal gyrus, and posterior cingulate gyrus, whereas their recall from person cues was associated with activity in the left insula, right middle frontal gyrus, and posterior cingulate gyrusToshikatsu Fujii; Jiro Okuda; Takashi Tsukiura; Hiroya Ohtake; Rina Miura; Reiko Fukatsu; Kyoko Suzuki; Ryuta Kawashima; Masatoshi Itoh; Hiroshi Fukuda; Atsushi Yamadori. The role of the basal forebrain in episodic memory retrieval: a positron emission tomography study. NeuroImage 15(3):501-8, 2002. PMID: 11848693. DOI: 10.1006/nimg.2001.0995. WOBIB: 32.
Activation of the right hippocampus was strongly associated with knowing accurately where places were located and navigating accurately between themE. A. Maguire; N. Burgess; J. G. Donnett; Richard S. J. Frackowiak; C. D. Frith; J. O'Keefe. Knowing where and getting there: a human navigation network. Science 280(5365):921-4, 1998. PMID: 9572740. WOBIB: 38.
These two right-side brain structures function in the context of associated activity in right inferior parietal and bilateral medial parietal regions that support egocentric movement through the virtual town, and activity in other left-side regions (hippocampus, frontal cortex) probably involved in nonspatial aspects of navigationE. A. Maguire; N. Burgess; J. G. Donnett; Richard S. J. Frackowiak; C. D. Frith; J. O'Keefe. Knowing where and getting there: a human navigation network. Science 280(5365):921-4, 1998. PMID: 9572740. WOBIB: 38.
Right amygdala and auditory cortex were activated only by unpleasant words, while left frontal pole was activated only by pleasant wordsRichard J. Maddock; Amy S. Garrett; Michael H. Buonocore. Posterior cingulate cortex activation by emotional words: fMRI evidence from a valence decision task. Human Brain Mapping 18(1):30-41, 2003. PMID: 12454910. DOI: 10.1002/hbm.10075. WOBIB: 39.
This reaction time effect was accompanied by increases in activity in four regions: the right ventrolateral prefrontal cortex, the supplementary motor area, the left superior parietal lobe, and the left anterior parietal cortexE. Hazeltine; Russell Poldrack; John D. E. Gabrieli. Neural activation during response competition. Journal of Cognitive Neuroscience 12(Supplement 2):118-29, 2000. PMID: 11506652. DOI: 10.1162/089892900563984. FMRIDCID: 2-2000-11173. WOBIB: 40.
Functional magnetic resonance imaging experiments revealed activations in the left temporal polar region during the retrieval of familiar and newly learned people's names, and in the right superior temporal and bilateral prefrontal cortices during the retrieval of newly learned information from face cuesTakashi Tsukiura; Toshikatsu Fujii; Reiko Fukatsu; Taisuke Otsuki; Jiro Okuda; Atsushi Umetsu; Kyoko Suzuki; Michio Tabuchi; Isao Yanagawa; Tatsuo Nagasaka; Ryuta Kawashima; Hiroshi Fukuda; Shoki Takahashi; Atsushi Yamadori. Neural basis of the retrieval of people's names: evidence from brain-damaged patients and fMRI. Journal of Cognitive Neuroscience 14(6):922-37, 2002. PMID: 12191459. DOI: 10.1162/089892902760191144. FMRIDCID: 2-2002-112QC. WOBIB: 41.
These data provide new evidence that the left anterior temporal region is crucial for the retrieval of people's names irrespective of their familiarity and that the right superior temporal and bilateral prefrontal areas are crucial for the process of associating newly learned people's faces and namesTakashi Tsukiura; Toshikatsu Fujii; Reiko Fukatsu; Taisuke Otsuki; Jiro Okuda; Atsushi Umetsu; Kyoko Suzuki; Michio Tabuchi; Isao Yanagawa; Tatsuo Nagasaka; Ryuta Kawashima; Hiroshi Fukuda; Shoki Takahashi; Atsushi Yamadori. Neural basis of the retrieval of people's names: evidence from brain-damaged patients and fMRI. Journal of Cognitive Neuroscience 14(6):922-37, 2002. PMID: 12191459. DOI: 10.1162/089892902760191144. FMRIDCID: 2-2002-112QC. WOBIB: 41.
Two areas with these properties were found in the left inferior frontal cortex (opercular region) and the rostral-most region of the right superior parietal lobuleM. Iacoboni; R. P. Woods; M. Brass; H. Bekkering; J. C. Mazziotta; G. Rizzolatti. Cortical mechanisms of human imitation. Science 286(5449):2526-8, 1999. PMID: 10617472. WOBIB: 44.
Deduction activated areas near right brain homologues of left language areas in middle temporal lobe, inferior frontal cortex and basal ganglia, as well as right amygdala, but not spatial-visual areasL. M. Parsons; D. Osherson. New Evidence for Distinct Right and Left Brain Systems for Deductive versus Probabilistic Reasoning. Cerebral Cortex 11(10):954-65, 2001. PMID: 11549618. WOBIB: 47.
Right hemisphere activations in the deduction task cannot be explained by spill-over from overtaxed, left language areasL. M. Parsons; D. Osherson. New Evidence for Distinct Right and Left Brain Systems for Deductive versus Probabilistic Reasoning. Cerebral Cortex 11(10):954-65, 2001. PMID: 11549618. WOBIB: 47.
Normal subjects were instructed to manipulate a small graspable object with a pair of tongs or with the fingers of their right or left handK. Inoue; R. Kawashima; Motoaki Sugiura; A. Ogawa; T. Schormann; Karl Zilles; Hiroshi Fukuda. Activation in the ipsilateral posterior parietal cortex during tool use: a PET study. NeuroImage 14(6):1469-75, 2001. PMID: 11707103. DOI: 10.1006/nimg.2001.0942. WOBIB: 48.
The only site activated during manipulation with the tool, compared with the fingers, with the right hand was the lateral edge of the right intraparietal sulcus (IPS)K. Inoue; R. Kawashima; Motoaki Sugiura; A. Ogawa; T. Schormann; Karl Zilles; Hiroshi Fukuda. Activation in the ipsilateral posterior parietal cortex during tool use: a PET study. NeuroImage 14(6):1469-75, 2001. PMID: 11707103. DOI: 10.1006/nimg.2001.0942. WOBIB: 48.
We found that differences in the meaning of the action, irrespective of the strategy used during observation, lead to different patterns of brain activity and clear left/right asymmetriesJean Decety; J. Grezes; N. Costes; Daniela Perani; Marc Jeannerod; E. Procyk; F. Grassi; F. Fazio. Brain activity during observation of actions. Influence of action content and subject's strategy. Brain 120 ( Pt 10):1763-77, 1997. PMID: 9365369. WOBIB: 49.
Meaningful actions strongly engaged the left hemisphere in frontal and temporal regions while meaningless actions involved mainly the right occipitoparietal pathwayJean Decety; J. Grezes; N. Costes; Daniela Perani; Marc Jeannerod; E. Procyk; F. Grassi; F. Fazio. Brain activity during observation of actions. Influence of action content and subject's strategy. Brain 120 ( Pt 10):1763-77, 1997. PMID: 9365369. WOBIB: 49.
Maintenance of orientations involved a distributed fronto-parietal network, that is, left and right lateral superior frontal sulcus (SFSl), bilateral ventrolateral prefrontal cortex (VLPFC), bilateral precuneus, and right superior parietal lobe (SPL)L. Cornette; P. Dupont; E. Salmon; G. A. Orban. The neural substrate of orientation working memory. Journal of Cognitive Neuroscience 13(6):813-28, 2001. PMID: 11564325. DOI: 10.1162/08989290152541476. WOBIB: 51.
Deactivations were observed in the posterior cingulate gyrus and in the amygdala and were right-lateralized in the prefrontal, parietal and middle temporal corticesAndreas Bartels; Semir Zeki. The neural basis of romantic love. NeuroReport 11(17):3829-3834, 2000. PMID: 11117499. WOBIB: 54.
Notably, perceived thermal intensity was well correlated with activation in the right (ipsilateral) anterior insular and orbitofrontal corticesA. D. Craig; K. Chen; D. Bandy; Eric M. Reiman. Thermosensory activation of insular cortex. Nature Neuroscience 3(2):184-190, 2000. PMID: 10649575. DOI: 10.1038/72131. WOBIB: 56.
Unlike the monkey brain, spatial awareness in humans is a function largely confined to the right superior temporal cortex, a location topographically reminiscent of that for language on the leftHans-Otto Karnath; S. Ferber; M. Himmelbach. Spatial awareness is a function of the temporal not the posterior parietal lobe. Nature 411(6840):950-3, 2001. PMID: 11418859. DOI: 10.1038/35082075. WOBIB: 59.
Hence, the decisive phylogenetic transition from monkey to human brain seems to be a restriction of a formerly bilateral function to the right side, rather than a shift from the temporal to the parietal lobeHans-Otto Karnath; S. Ferber; M. Himmelbach. Spatial awareness is a function of the temporal not the posterior parietal lobe. Nature 411(6840):950-3, 2001. PMID: 11418859. DOI: 10.1038/35082075. WOBIB: 59.
Experiments were performed on the right and left hand independently and with two attentional contexts: subjects either attended to pain or attended to a visual global motion discrimination task (to distract them from pain)Jonathan C. W. Brooks; Turo J. Nurmikko; William E. Bimson; Krish D. Singh; Neil Roberts. fMRI of thermal pain: effects of stimulus laterality and attention. NeuroImage 15(2):293-301, 2002. PMID: 11798266. DOI: 10.1006/nimg.2001.0974. WOBIB: 60.
Group analysis demonstrated that attended warm stimulation of the right hand did not produce any significantly activated clustersJonathan C. W. Brooks; Turo J. Nurmikko; William E. Bimson; Krish D. Singh; Neil Roberts. fMRI of thermal pain: effects of stimulus laterality and attention. NeuroImage 15(2):293-301, 2002. PMID: 11798266. DOI: 10.1006/nimg.2001.0974. WOBIB: 60.
The war-related condition, as compared to the neutral, increased rCBF in the right sensorimotor areas (Brodmann areas 4/6), extending into the primary sensory cortex (areas 1/2/3), and the cerebellar vermisAnna Pissiota; Orjan Frans; Manuel Fernandez; Lars von Knorring; Hakan Fischer; Mats Fredrikson. Neurofunctional correlates of posttraumatic stress disorder: a PET symptom provocation study. European Archives of Psychiatry and Clinical Neuroscience 252(2):68-75, 2002. PMID: 12111339. DOI: 10.1007/s004060200014. WOBIB: 66.
The same loci, however, with a stronger lateralization to the right hemisphere were activated in the comparison PERSONAL to REST (autobiographical episodic memory ecphory)G. R. Fink; H. J. Markowitsch; M. Reinkemeier; T. Bruckbauer; J. Kessler; W. D. Heiss. Cerebral representation of one's own past: neural networks involved in autobiographical memory. Journal of Neuroscience 16(13):4275-82, 1996. PMID: 8753888. WOBIB: 68.
In addition, the right temporomesial, right dorsal prefrontal, right posterior cingulate areas, and the left cerebellum were activatedG. R. Fink; H. J. Markowitsch; M. Reinkemeier; T. Bruckbauer; J. Kessler; W. D. Heiss. Cerebral representation of one's own past: neural networks involved in autobiographical memory. Journal of Neuroscience 16(13):4275-82, 1996. PMID: 8753888. WOBIB: 68.
A comparison of PERSONAL and IMPERSONAL (autobiographical vs nonautobiographical episodic memory ecphory) demonstrated a preponderantly right hemispheric activation including primarily right temporomesial and temporolateral cortex, right posterior cingulate areas, right insula, and right prefrontal areasG. R. Fink; H. J. Markowitsch; M. Reinkemeier; T. Bruckbauer; J. Kessler; W. D. Heiss. Cerebral representation of one's own past: neural networks involved in autobiographical memory. Journal of Neuroscience 16(13):4275-82, 1996. PMID: 8753888. WOBIB: 68.
These results suggest that a right hemispheric network of temporal, together with posterior, cingulate, and prefrontal, areas is engaged in the ecphory of affect-laden autobiographical informationG. R. Fink; H. J. Markowitsch; M. Reinkemeier; T. Bruckbauer; J. Kessler; W. D. Heiss. Cerebral representation of one's own past: neural networks involved in autobiographical memory. Journal of Neuroscience 16(13):4275-82, 1996. PMID: 8753888. WOBIB: 68.
Cortical activity due to a thermal painful stimulus applied to the right hand was studied in the middle third of the contralateral brain and compared to activations for vibrotactile and motor tasks using the same body part, in nine normal subjectsP. A. Gelnar; B. R. Krauss; P. R. Sheehe; N. M. Szeverenyi; A. V. Apkarian. A comparative fMRI study of cortical representations for thermal painful, vibrotactile, and motor performance tasks. NeuroImage 10(4):460-82, 1999. PMID: 10493903. DOI: 10.1006/nimg.1999.0482. WOBIB: 75.
The hypnotic state induced a significant activation of a right-sided extrastriate area and the anterior cingulate cortexM. E. Faymonville; S. Laureys; C. Degueldre; G. DelFiore; A. Luxen; G. Franck; M. Lamy; P. Maquet. Neural mechanisms of antinociceptive effects of hypnosis. Anesthesiology 92(5):1257-67, 2000. PMID: 10781270. WOBIB: 76.
Journal of Neuroscience, 19, 3962-3972], a right dorsolateral prefrontal region showed a greater response to correct low- versus correct high-confidence judgementsR. N. Henson; Michael D. Rugg; T. Shallice; R. J. Dolan. Confidence in recognition memory for words: dissociating right prefrontal roles in episodic retrieval. Journal of Cognitive Neuroscience 12(6):913-23, 2000. PMID: 11177413. WOBIB: 80.
The anterior left and right prefrontal regions also showed an old-new difference, but for these regions the difference emerged relatively later in timeR. N. Henson; Michael D. Rugg; T. Shallice; R. J. Dolan. Confidence in recognition memory for words: dissociating right prefrontal roles in episodic retrieval. Journal of Cognitive Neuroscience 12(6):913-23, 2000. PMID: 11177413. WOBIB: 80.
Increases in activity when the tones were unpredictable were seen in the inferior and superior temporal lobe bilaterally, the right parahippocampal gyrus and right parietal cortexS. J. Blakemore; G. Rees; C. D. Frith. How do we predict the consequences of our actions? A functional imaging study. Neuropsychologia 36(6):521-9, 1998. PMID: 9705062. WOBIB: 82.
We observed an interaction between the predictability of stimuli and self-generated actions in several areas, including the medial posterior cingulate cortex, left insula, dorsomedial thalamus, superior colliculus and right inferior temporal cortexS. J. Blakemore; G. Rees; C. D. Frith. How do we predict the consequences of our actions? A functional imaging study. Neuropsychologia 36(6):521-9, 1998. PMID: 9705062. WOBIB: 82.
Most subjects also showed significant activation of the left anterior orbitomedial, anterior middle frontal, precuneus, cuneus, and posterior inferior parietal cortices, and the right posterior cingulate and motor corticesR. J. Maddock; A. S. Garrett; Michael H. Buonocore. Remembering familiar people: the posterior cingulate cortex and autobiographical memory retrieval. Neuroscience 104(3):667-76, 2001. PMID: 11440800. WOBIB: 90.
Participants viewed a TV screen displaying white noise or snake videotapes presented both with and without electric shocks given to the right handM. Fredrikson; T. Furmark; M. T. Olsson; Håkan Fischer; J. Andersson; B. Langstrom. Functional neuroanatomical correlates of electrodermal activity: a positron emission tomographic study. Psychophysiology 35(2):179-85, 1998. PMID: 9529944. WOBIB: 94.
Negative relations were observed bilaterally in the secondary visual cortex (Areas 18 and 19) and the right inferior parietal cortex (Area 39), with a tendency also for the right insular cortex (Areas 13, 15, and 16)M. Fredrikson; T. Furmark; M. T. Olsson; Håkan Fischer; J. Andersson; B. Langstrom. Functional neuroanatomical correlates of electrodermal activity: a positron emission tomographic study. Psychophysiology 35(2):179-85, 1998. PMID: 9529944. WOBIB: 94.
Each subject (14 normal, right-handed subjects; 10 male, 4 female; ages 18-42) used a visual analog scale to rate the perceived stimulus intensity (0 = no heat, 7 = pain threshold, 10 = barely tolerable pain) after each scanK. L. Casey; T. J. Morrow; J. Lorenz; S. Minoshima. Temporal and spatial dynamics of human forebrain activity during heat pain: analysis by positron emission tomography. Journal of Neurophysiology 85(2):951-9, 2001. PMID: 11160525. WOBIB: 95.
The results show that regional cerebral blood flow is positively correlated with REM sleep in pontine tegmentum, left thalamus, both amygdaloid complexes, anterior cingulate cortex and right parietal operculumP. Maquet; J. Peters; J. Aerts; G. Delfiore; C. Degueldre; A. Luxen; G. Franck. Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature 383(6596):163-6, 1996. PMID: 8774879. WOBIB: 96.
Disgusted facial expressions activated the right putamen and the left insula cortex, whereas enhanced activity in the posterior part of the right gyrus cinguli and the medial temporal gyrus of the left hemisphere was observed during processing of angry facesR. Sprengelmeyer; M. Rausch; U. T. Eysel; H. Przuntek. Neural structures associated with recognition of facial expressions of basic emotions. Proc R Soc Lond B Biol Sci 265(1409):1927-31, 1998. PMID: 9821359. WOBIB: 97.
We detected signal increase in the right middle temporal gyrus and left prefrontal cortex during presentation of familiar faces, and in several brain regions, including bilateral posterior cingulate gyri, bilateral insulae and right middle occipital cortex during presentation of unfamiliar facesMary L. Phillips; E. T. Bullmore; R. Howard; P. W. Woodruff; I. C. Wright; Steven C. R. Williams; A. Simmons; C. Andrew; M. Brammer; Anthony S. David. Investigation of facial recognition memory and happy and sad facial expression perception: an fMRI study. Psychiatry Research 83(3):127-38, 1998. PMID: 9849722. WOBIB: 98.
During presentation of happy facial expressions, we detected a signal increase predominantly in the left anterior cingulate gyrus, bilateral posterior cingulate gyri, medial frontal cortex and right supramarginal gyrus, brain regions previously implicated in visuospatial and emotion processing tasksMary L. Phillips; E. T. Bullmore; R. Howard; P. W. Woodruff; I. C. Wright; Steven C. R. Williams; A. Simmons; C. Andrew; M. Brammer; Anthony S. David. Investigation of facial recognition memory and happy and sad facial expression perception: an fMRI study. Psychiatry Research 83(3):127-38, 1998. PMID: 9849722. WOBIB: 98.
Using positron emission tomography (PET) and [15O]butanol we studied regional cerebral blood flow (rCBF) to a visual snake stimulus before and after classical conditioning with an unconditioned electric shock delivered to the right handM. Fredrikson; G. Wik; Håkan Fischer; J. Andersson. Affective and attentive neural networks in humans: a PET study of Pavlovian conditioning. NeuroReport 7(1):97-101, 1995. PMID: 8742426. WOBIB: 99.
Seven right-handed, neurologically intact males were subjects; each received neuropsychological and pain threshold testingBrent A. Vogt; Stuart Derbyshire; Anthony K. Jones. Pain processing in four regions of human cingulate cortex localized with co-registered PET and MR imaging. European Journal of Neuroscience 8(7):1461-73, 1996. PMID: 8758953. WOBIB: 100.
Six cases had at least one significant elevation of rCBF in the right hemisphere that primarily involved area 24b'; five of these cases also had an elevation in area 32', while the seventh case had elevated rCBF in these areas in the left hemisphereBrent A. Vogt; Stuart Derbyshire; Anthony K. Jones. Pain processing in four regions of human cingulate cortex localized with co-registered PET and MR imaging. European Journal of Neuroscience 8(7):1461-73, 1996. PMID: 8758953. WOBIB: 100.
The group showed significant positive correlations between symptom intensity and blood flow in the right inferior frontal gyrus, caudate nucleus, putamen, globus pallidus and thalamus, and the left hippocampus and posterior cingulate gyrusPhilip K. McGuire; C. J. Bench; C. D. Frith; I. M. Marks; Richard S. J. Frackowiak; R. J. Dolan. Functional anatomy of obsessive-compulsive phenomena. British Journal of Psychiatry 164(4):459-468, 1994. PMID: 8038933. WOBIB: 104.
Negative correlations were evident in the right superior prefrontal cortex, and the temporoparietal junction, particularly on the right sidePhilip K. McGuire; C. J. Bench; C. D. Frith; I. M. Marks; Richard S. J. Frackowiak; R. J. Dolan. Functional anatomy of obsessive-compulsive phenomena. British Journal of Psychiatry 164(4):459-468, 1994. PMID: 8038933. WOBIB: 104.
Regardless of how the information had been encoded, recognition was associated with increased activation in regions in right prefrontal cortex, left anterior cingulate, and cerebellumL. Nyberg; Endel Tulving; R. Habib; L. G. Nilsson; S. Kapur; S. Houle; Roberto Cabeza; A. R. McIntosh. Functional brain maps of retrieval mode and recovery of episodic information. NeuroReport 7(1):249-52, 1995. PMID: 8742463. WOBIB: 105.
Recognition following meaning encoding was specifically associated with increased activation in left temporal cortex, and recognition following voice encoding involved regions in right orbital frontal and parahippocampal cortexL. Nyberg; Endel Tulving; R. Habib; L. G. Nilsson; S. Kapur; S. Houle; Roberto Cabeza; A. R. McIntosh. Functional brain maps of retrieval mode and recovery of episodic information. NeuroReport 7(1):249-52, 1995. PMID: 8742463. WOBIB: 105.
Regions more active in retrieval than encoding included bilateral inferior parietal cortex, bilateral precuneus, right frontal polar cortex, right dorsolateral prefrontal cortex, and right inferior frontal/insular cortexK. B. McDermott; J. G. Ojemann; Steven E. Petersen; J. M. Ollinger; A. Z. Snyder; E. Akbudak; T. E. Conturo; Marcus E. Raichle. Direct comparison of episodic encoding and retrieval of words: an event-related fMRI study. Memory 7(5-6):661-78, 1999. PMID: 10659091. WOBIB: 106.
Regional cerebral blood flow (rCBF) was measured using H2(15)O positron emission tomography (PET) while six male normal subjects pressed a morse-key with their right index finger with a constant force of 20% of their maximal voluntary contraction (MVC) for different periods of time (1C. Dettmers; R. N. Lemon; K. M. Stephan; G. R. Fink; Richard S. J. Frackowiak. Cerebral activation during the exertion of sustained static force in man. NeuroReport 7(13):2103-10, 1996. PMID: 8930968. WOBIB: 108.
The right dorsolateral prefrontal cortex demonstrated a significant correlation between rCBF and duration of key-press, possibly reflecting processes over-riding fatigueC. Dettmers; R. N. Lemon; K. M. Stephan; G. R. Fink; Richard S. J. Frackowiak. Cerebral activation during the exertion of sustained static force in man. NeuroReport 7(13):2103-10, 1996. PMID: 8930968. WOBIB: 108.
Data were acquired from a normal right-handed volunteer during periodic performance of a task which demanded visual and semantic processing of words and subvocalization of a decision about the meaning of each wordE. T. Bullmore; S. Rabe-Hesketh; R. G. Morris; Steven C. R. Williams; L. Gregory; J. A. Gray; M. J. Brammer. Functional magnetic resonance image analysis of a large-scale neurocognitive network. NeuroImage 4(1):16-33, 1996. PMID: 9345494. WOBIB: 113.
Painful heat (47-48 degrees C), nonpainful vibratory (110 Hz), and neutral control (34 degrees C) stimuli were applied to the left forearm of right-handed male subjectsR. C. Coghill; J. D. Talbot; A. C. Evans; Ernst Meyer; Albert Gjedde; M. C. Bushnell; G. H. Duncan. Distributed processing of pain and vibration by the human brain. Journal of Neuroscience 14(7):4095-108, 1994. PMID: 8027764. WOBIB: 117.
Accordingly, positron emission tomography (PET) with intravenous injection of H2(15)O was used to detect increases in regional cerebral blood flow (rCBF) in normal right-handed male and female subjects as they discriminated differences in the intensity of innocuous and noxious heat stimuli applied to the left forearmP. E. Paulson; S. Minoshima; T. J. Morrow; K. L. Casey. Gender differences in pain perception and patterns of cerebral activation during noxious heat stimulation in humans. Pain 76(1-2):223-9, 1998. PMID: 9696477. WOBIB: 118.
During sleep there was a relative flow increase in the occipital lobes and a relative flow decrease in the bilateral cerebellum, the bilateral posterior parietal cortex, the right premotor cortex and the left thalamusTroels W. Kjaer; Ian Law; Gordon Wiltschiotz; Olaf B. Paulson; Peter L. Madsen. Regional cerebral blood flow during light sleep--a H(2)(15)O-PET study. Journal of Sleep Research 11(3):201-207, 2002. PMID: 12220315. WOBIB: 124.
There was no difference in global cerebral metabolism before and after treatment whereas a post-treatment reduction in normalized rCMRglc was found in the right caudate nucleusElsebet S. Hansen; Steen Hasselbalch; Ian Law; Tom G. Bolwig. The caudate nucleus in obsessive-compulsive disorder. Reduced metabolism following treatment with paroxetine: a PET study. International Journal of Neuropsychopharmacology 5(1):1-10, 2002. PMID: 12057027. DOI: doi:10.1017/S1461145701002681. WOBIB: 125.
Subjects felt the passive movement of the right index finger on a rectangular field and watched a cursor moving on a computer screenDaniela Balslev; Finn Årup Nielsen; Olaf B. Paulson; Ian Law. Right Temporoparietal Cortex Activation during Visuo-proprioceptive Conflict. Cerebral Cortex 15(2):166-169, 2004. PMID: 15238438. DOI: 10.1093/cercor/bhh119. WOBIB: 128.
Monitoring incongruent compared with congruent movement activated the premotor area bilaterally and the right temporoparietal junctionDaniela Balslev; Finn Årup Nielsen; Olaf B. Paulson; Ian Law. Right Temporoparietal Cortex Activation during Visuo-proprioceptive Conflict. Cerebral Cortex 15(2):166-169, 2004. PMID: 15238438. DOI: 10.1093/cercor/bhh119. WOBIB: 128.
, activity increasing with rate) were detected in visual areas, right superior temporal gyrus, and bilateral precentral gyrusAndrea Mechelli; Karl J. Friston; Cathy J. Price. The effects of presentation rate during word and pseudoword reading: a comparison of PET and fMRI. Journal of Cognitive Neuroscience 12 Suppl 2():145-156, 2000. PMID: 11506654. DOI: 10.1162/089892900564000. FMRIDCID: 2-2000-11189. WOBIB: 129.
The results demonstrate that the right superior temporal cortex, the insula and subcortically putamen and caudate nucleus are the neural structures damaged significantly more often in patients with spatial neglectHans-Otto Karnath; Monika Fruhmann Berger; Wilhelm Kuker; Chris Rorden. The Anatomy of Spatial Neglect based on Voxelwise Statistical Analysis: A Study of 140 Patients. Cerebral Cortex 14(10):1164-1172, 2004. PMID: 15142954. DOI: 10.1093/cercor/bhh076. FMRIDCID: . WOBIB: 133.
RESULTS: The random episodic condition produced activations in widely distributed association cortex (right and left frontal, parietal, angular/supramarginal, and posterior inferior temporal regions)Nancy C. Andreasen; Daniel S. O'Leary; Ted Cizadlo; Stephan Arndt; Karim Rezai; G. Leonard Watkins; Laura L. Ponto; Richard D. Hichwa. Remembering the past: two facets of episodic memory explored with positron emission tomography. American Journal of Psychiatry 152(11):1576-1585, 1995. PMID: 7485619. FMRIDCID: . BrainMap: 219. WOBIB: 134.
The most notable activation during the saccade suppression task, compared to central fixation alone, was a bilateral activation of the parietal cortex with a right-sided preponderance, activation of the supplementary eye field/caudal cingulate regions, and activation of frontal regions close to the frontal eye fieldsIan Law; Claus Svarer; Søren Holm; Olaf B. Paulson. The activation pattern in normal humans during suppression, imagination and performance of saccadic eye movements. Acta Physiologica Scandinavica 161(3):419-434, 1997. PMID: 9401596. FMRIDCID: . WOBIB: 135.
The citalopram-induced change in cerebral metabolism was positively correlated with age in the right precuneus, right paracentral lobule, and left middle temporal gyrus and negatively correlated with age in the left anterior cingulate gyrus, right inferior and middle frontal gyri, right insula, and right inferior parietal lobuleSara Goldberg; Gwenn S. Smith; Anna Barnes; Yilong Ma; Elisse Kramer; Kimberly Robeson; Margaret Kirshner; Bruce G. Pollock; David Eidelberg. Serotonin modulation of cerebral glucose metabolism in normal aging. Neurobiology of Aging 25(2):167-174, 2004. PMID: 14749134. FMRIDCID: . WOBIB: 138.
Multimodally responsive areas comprised a right-lateralized network including the temporoparietal junction, inferior frontal gyrus, insula and left cingulate and supplementary motor areasJ. Downar; A. P. Crawley; D. J. Mikulis; K. D. Davis. A multimodal cortical network for the detection of changes in the sensory environment. Nature Neuroscience 3(3):277-283, 2000. PMID: 10700261. DOI: 10.1038/72991. FMRIDCID: . WOBIB: 148.
During active and passive (driven by a torque motor) flexion and extension of the right elbow, regional cerebral blood flow (rCBF) was measured in six healthy, male volunteers using positron emission tomography and the standard H2(15)O injection techniqueC. Weiller; M. Juptner; S. Fellows; M. Rijntjes; G. Leonhardt; S. Kiebel; S. Muller; H. C. Diener; A. F. Thilmann. Brain representation of active and passive movements. NeuroImage 4(2):105-110, 1996. PMID: 9345502. FMRIDCID: . WOBIB: 151.
During active as well as during passive movements of the right elbow there were strong increases in rCBF, identical in location, amount, and extent in the contralateral sensorimotor cortexC. Weiller; M. Juptner; S. Fellows; M. Rijntjes; G. Leonhardt; S. Kiebel; S. Muller; H. C. Diener; A. F. Thilmann. Brain representation of active and passive movements. NeuroImage 4(2):105-110, 1996. PMID: 9345502. FMRIDCID: . WOBIB: 151.
Measuring BOLD signal change in fMRI, we examined the neural correlates of ketamine-induced emotional blunting in eight young right-handed healthy men receiving an infusion of ketamine or saline placebo while viewing alternating 30 s blocks of faces displaying fear versus neutral expressionsKathryn M. Abel; Matthew P. G. Allin; Katarzyna Kucharska-Pietura; Anthony S. David; Chris Andrew; Steven C. R. Williams; Michael J. Brammer; Mary L. Phillips. Ketamine alters neural processing of facial emotion recognition in healthy men: an fMRI study. NeuroReport 14(3):387-391, 2003. PMID: 12634489. DOI: 10.1097/01.wnr.0000058031.29600.31. FMRIDCID: . WOBIB: 155.
Results demonstrated that, relative to an emotionally Neutral state, both the Sad and the Happy states were associated with significant loci of activation, bilaterally, in the orbitofrontal cortex, and in the left medial prefrontal cortex, left ventrolateral prefrontal cortex, left anterior temporal pole, and right ponsMario Pelletier; Alain Bouthillier; Johanne Levesque; Serge Carrier; Claude Breault; Vincent Paquette; Boualem Mensour; Jean-Maxime Leroux; Gilles Beaudoin; Pierre Bourgouin; Mario Beauregard. Separate neural circuits for primary emotions? Brain activity during self-induced sadness and happiness in professional actors. NeuroReport 14(8):1111-1116, 2003. PMID: 12821792. DOI: 10.1097/01.wnr.0000075421.59944.69. FMRIDCID: . WOBIB: 157.
We report here significant cerebral blood flow increases at the junction of the inferior frontal and temporal lobes bilaterally, corresponding to the piriform cortex, and unilaterally, in the right orbitofrontal cortexRobert J. Zatorre; Marilyn Jones-Gotman; Alan C. Evans; Ernst Meyer. Functional localization and lateralization of human olfactory cortex. Nature 360(6402):339-340, 1992. PMID: 1448149. DOI: 10.1038/360339a0. FMRIDCID: . WOBIB: 158.
The results complement and extend previous data implicating these regions in olfactory processing, and indicate that a functional asymmetry exists in the human brain favouring the right orbitofrontal area in olfactionRobert J. Zatorre; Marilyn Jones-Gotman; Alan C. Evans; Ernst Meyer. Functional localization and lateralization of human olfactory cortex. Nature 360(6402):339-340, 1992. PMID: 1448149. DOI: 10.1038/360339a0. FMRIDCID: . WOBIB: 158.
Acquisition was associated with activity in the left prefrontal cortex and the retrosplenial area, whereas retrieval was associated with activity in right prefrontal cortex and the precuneusTim Shallice; Paul Fletcher; Chris D. Frith; Paul Grasby; Richard S. J. Frackowiak; Raymond J. Dolan. Brain regions associated with acquisition and retrieval of verbal episodic memory. Nature 368(6472):633-635, 1994. PMID: 8145849. DOI: 10.1038/368633a0. FMRIDCID: . WOBIB: 159.
A significant negative correlation was observed between binding potential values and the novelty seeking scores on TCI in the right insular cortexT. Suhara; F. Yasuno; Y. Sudo; M. Yamamoto; M. Inoue; Y. Okubo; K. Suzuki. Dopamine D2 receptors in the insular cortex and the personality trait of novelty seeking. NeuroImage 13(5):891-895, 2001. PMID: 11304084. DOI: 10.1006/nimg.2001.0761. FMRIDCID: . WOBIB: 160.
Our result indicates that there is a significant association between dopamine D2 receptor binding and the human novelty seeking trait in the right insular cortexT. Suhara; F. Yasuno; Y. Sudo; M. Yamamoto; M. Inoue; Y. Okubo; K. Suzuki. Dopamine D2 receptors in the insular cortex and the personality trait of novelty seeking. NeuroImage 13(5):891-895, 2001. PMID: 11304084. DOI: 10.1006/nimg.2001.0761. FMRIDCID: . WOBIB: 160.
Right-handed volunteers listened to (i) neutral words alternating with no words as the control condition, and (ii) neutral words alternating with threat-related words as the experimental conditionRichard J. Maddock; Michael H. Buonocore. Activation of left posterior cingulate gyrus by the auditory presentation of threat-related words: an fMRI study. Psychiatry Research 75(1):1-14, 1997. PMID: 9287369. FMRIDCID: . WOBIB: 165.
05) of normalized cerebral counts were located in the left sensorimotor cortex (MISI), right motor cortex, left thalamus, right insula, supplementary motor area (SMA), and bilaterally in the primary auditory cortex and the cerebellumMorten Blinkenberg; Christian Bonde; Søren Holm; Claus Svarer; Jimmy Andersen; Olaf B. Paulson; Ian Law. Rate dependence of regional cerebral activation during performance of a repetitive motor task: a PET study. Journal of Cerebral Blood Flow and Metabolism 16(5):794-803, 1996. PMID: 8784224. DOI: 10.1097/00004647-199609000-00004. FMRIDCID: . WOBIB: 166.
Here we use echo-planar functional magnetic resonance imaging to study 38 right-handed subjects (19 males and 19 females) during orthographic (letter recognition), phonological (rhyme) and semantic (semantic category) tasksBennett A. Shaywitz; Sally E. Shaywitz; Kenneth R. Pugh; R. Todd Constable; Pawl Skudlawski; Robert K. Fulbright; Richard A. Bronen; Jack M. Fletcher; Donald P. Shankwiler; Leonard Katz; John C. Gore. Sex differences in the functional organization of the brain for language. Nature 373(6515):607-609, 1995. PMID: 7854416. DOI: 10.1038/373607a0. FMRIDCID: . WOBIB: 169.
During phonological tasks, brain activation in males is lateralized to the left inferior frontal gyrus regions; in females the pattern of activation is very different, engaging more diffuse neural systems that involve both the left and right inferior frontal gyrusBennett A. Shaywitz; Sally E. Shaywitz; Kenneth R. Pugh; R. Todd Constable; Pawl Skudlawski; Robert K. Fulbright; Richard A. Bronen; Jack M. Fletcher; Donald P. Shankwiler; Leonard Katz; John C. Gore. Sex differences in the functional organization of the brain for language. Nature 373(6515):607-609, 1995. PMID: 7854416. DOI: 10.1038/373607a0. FMRIDCID: . WOBIB: 169.
The left inferior frontal and left superior temporal regions (Broca's and Wernicke's areas), along with the right inferior frontal cortex, demonstrated a convex response to speech compression; their activity increased as compression increased, but then decreased when speech became incomprehensibleRussell A. Poldrack; Elise Temple; Athanassios Protopapas; Srikantan Nagarajan; Paula Tallal; Michael Merzenich; John D. E. Gabrieli. Relations Between the Neural Bases of Dynamic Auditory Processing and Phonological Processing: Evidence from fMRI. Journal of Cognitive Neuroscience 13(5):687-697, 2001. PMID: 11506664. FMRIDCID: 2-2001-111KR. WOBIB: 171.
Areas showing consistent decreases during active tasks included posterior cingulate/precuneous (Brodmann area, BA 31/7), left (Bas 40 and 39/19) and right (BA 40) inferior parietal cortex, left dorsolateral frontal cortex (BA 8), left lateral inferior frontal cortex (BA 10/47), left inferior temporal gyrus (BA 20), a strip of medial frontal regions running along a dorsal-ventral axis (Bas 8, 9, 10, and 32), and the right amygdalaGordon L. Shulman; Julie A. Fiez; Maurizio Corbetta; Randy L. Buckner; Francis M. Miezin; Marcus E. Raichle; Steven E. Petersen. Common Blood Flow Changes across Visual Tasks: II. Decreases in Cerebral Cortex. Journal of Cognitive Neuroscience 9(5):648-663, 1997. FMRIDCID: . WOBIB: 173.
Decreases were more pronounced in the posterior cingulate/precuneous (Bas 31/7) and right inferior parietal cortex (BA 40) during language-related tasks and more pronounced in left inferior frontal cortex (BA 10/47) during nonlanguage tasksGordon L. Shulman; Julie A. Fiez; Maurizio Corbetta; Randy L. Buckner; Francis M. Miezin; Marcus E. Raichle; Steven E. Petersen. Common Blood Flow Changes across Visual Tasks: II. Decreases in Cerebral Cortex. Journal of Cognitive Neuroscience 9(5):648-663, 1997. FMRIDCID: . WOBIB: 173.
Blood flow decreases did not generally show significant differences across the active task states within an experiment, but a verb-generation task produced larger decreases than a read task in right and left inferior parietal lobe (BA 40) and the posterior cingulate/precuneous (BA 31/7), while the read task produced larger decreases in left lateral inferior frontal cortex (BA 10/47)Gordon L. Shulman; Julie A. Fiez; Maurizio Corbetta; Randy L. Buckner; Francis M. Miezin; Marcus E. Raichle; Steven E. Petersen. Common Blood Flow Changes across Visual Tasks: II. Decreases in Cerebral Cortex. Journal of Cognitive Neuroscience 9(5):648-663, 1997. FMRIDCID: . WOBIB: 173.
The results showed that episodic retrieval task was associated with increased blood flow in right prefrontal and posterior cingulate cortex, as well as with a sustained right-frontopolar-positive ERP, but that the semantic retrieval task was associated with left frontal and temporal lobe activityEmrah Düzel; Roberto Cabeza; Terence W. Picton; Andrew P. Yonelinas; Henning Scheich; Hans-Jochen Heinze; Endel Tulving. Task-related and item-related brain processes of memory retrieval. Proceedings of the National Academy of Science of the United States of America 96(4):1794-1799, 1999. PMID: 9990104. FMRIDCID: . WOBIB: 181.
Duringpointing to the previous,instead, there was additional activation of supplementary motor cortex, anterior and midcingulate, and inferior occipital gyrus in the left hemisphere; superior parietal lobule, supramarginal gyrus, and posterior hippocampus in the right hemisphere; lingual gyri and cerebellar hemispheres bilaterally; anterior thalamus; and pulvinarF. Lacquaniti; Daniela Perani; E. Guigon; V. Bettinardi; M. Carrozzo; F. Grassi; Yves Rossetti; F. Fazio. Visuomotor Transformations for Reaching to Memorized Targets: A PET study. NeuroImage 5(2):129-146, 1997. PMID: 9345543. DOI: 10.1006.nimg.1996.0254. FMRIDCID: . WOBIB: 182.

Text count

Bib -> Asymmetry | Author | ICA | NMF | Novelty | Statistics | SVD | Title | WOBIB ]
Roi -> Alphabetic | Hammers | Tzourio-Mazoyer | Svarer | Top | Functional areas | Brodmann areas ]
[ Brede Database ]
Automatically constructed by Brede Toolbox through brede_roi_roi2html, 2006-10-05T15:48:29