WOROI: 100 - Left
 
Bib -> Asymmetry | Author | ICA | NMF | Novelty | Statistics | SVD | Title | WOBIB ]
 
 
Roi -> Alphabetic | Hammers | Tzourio-Mazoyer | Svarer | Top | Functional areas | Brodmann areas ]
 
 
[ Brede Database ]
 


WOROI: 100 - Left

Abbreviation: G

External databases

Taxonomy

ParentsSiblingsChildren
   Left posterior cingulate gyrus
Left frontal lobe
Left parietal lobe
Left temporal lobe
Left occipital lobe
Left dorsolateral prefrontal cortex
Left prefrontal cortex
Left anterior cingulate gyrus
Left amygdala
Left hippocampus
Left cerebellum
Left thalamus
Left globus pallidus
Left putamen
Left caudate nucleus
Left insula
Left parahippocampal gyrus
Left precentral gyrus
Left superior frontal gyrus, dorsolateral
Right superior frontal gyrus, dorsolateral
Left gyrus rectus
Left middle cingulate
Left calcarine sulcus
Left cuneus
Left lingual gyrus
Left supplementary motor area
Left hypothalamus
Left cingulate gyrus
Left primary auditory cortex
Left operculum

Talairach coordinates

  x     y     z   Lobar anatomy WOBIB WOEXP
-20 -14 4 Left putamen and thalamus 1 1
-12 -86 32 Left cuneus 1 1
-46 -71 -12 Left fusiform gyrus 2 2
-40 -85 13 Left middle occipital gyrus 2 2
-51 -17 -33 Left inferior temporal gyrus 2 3
-55 -25 -24 Left inferior temporal gyrus 2 4
-44 36 -19 Left middle frontal gyrus 2 5
-30 50 -18 Left middle frontal gyrus 2 5
-32 42 -19 Left middle frontal gyrus 2 5
-53 36 13 Left inferior frontal gyrus 2 5
-57 25 -1 Left inferior frontal gyrus 2 5
-63 7 18 Left precentral gyrus 2 5
-12 17 34 Left anterior cingulate gyrus 2 5
-39 -24 -9 Left insula 3 6
-12 -70 51 Left precuneus 3 6
-18 -62 45 Left intraparietal sulcus 3 6
-24 -95 19 Left intraoccipital sulcus 3 6
-24 -67 -7 Left collateral sulcus 3 6
15 -82 -9 Left lingual gyrus 3 6
-24 -89 18 Left superior occipital gyrus 3 6
-12 -96 8 Left cuneus 3 6
-3 -23 4 Left thalamus 3 6
-33 -4 44 Left frontal eye field 3 7
-53 14 -8 Left insula 3 7
-6 -59 53 Left precuneus 3 7
-3 -71 37 Left precuneus 3 7
-15 -73 48 Left superior parietal gyrus 3 7
-18 -72 26 Left parieto-occipital fissure 3 7
-15 -53 -2 Left lingual gyrus/anterior calcarine sulcus 3 7
-6 -70 1 Left Calcarine fissure 3 7
-3 -65 -9 Left superior vermis 3 7
-33 -53 52 Left parietal cortex 3 8
-9 -69 12 Left occipital cortex (V1) 3 8
-21 -64 -4 Left occipital cortex (lingual) 3 8
-30 -90 16 Left lateral occipital cortex 3 8
-39 -76 -9 Left occipital cortex (fusiform) 3 8
-2 54 14 Left medial prefrontal cortex 4 9
-48 20 -8 Left orbitofrontal cortex 4 9
-2 16 20 Left cingulate gyrus 4 9
-2 -12 10 Left thalamus 4 9
-4 -5 -12 Left hypothalamus 4 9
-40 8 -10 Left insular cortex 4 9
-24 -4 -3 Left ventral striatum 4 9
-18 -8 -13 Left amygdala 4 9
-50 -52 17 Left occipitotemporal cortex 4 9
-4 51 0 Left medial prefrontal cortex 4 10
-36 17 -17 Left orbitofrontal cortex 4 10
-2 15 19 Left cingulate gyrus 4 10
-32 8 -14 Left insular cortex 4 10
-18 -5 -5 Left ventral striatum 4 10
-18 -2 -18 Left amygdala 4 10
-58 -52 24 Left occipitotemporal cortex 4 10
-40 -72 -13 Left lateral occipital 5 11
-38 -50 -21 Left posterior fusiform gyrus 5 11
-25 -42 -10 Left anterior collateral sulcus 5 12
-28 -91 -2 Left inferior occipital gyrus 7 14
-46 -65 -12 Left fusiform gyrus 7 14
-48 -64 -7 Left inferior temporal gyrus 7 15
-38 -77 19 Left middle occipital gyrus 7 15
-34 -40 -13 Left fusiform gyrus 7 15
-59 -15 3 Left medial temporal gyrus 9 21
-42 -18 -2 Left medial temporal gyrus 9 21
-57 0 6 Left Superior temporal gyrus 9 21
-24 -85 8 Left occipital lobe 10 23
-51 9 29 Left precentral sulcus 10 23
-63 -37 39 Left inferior parietal lobule 10 24
-36 37 39 Left middle frontal gyrus 10 24
-4 -68 44 Left precuneus 10 25
-40 -64 47 Left parietal 10 25
-71 -39 2 Left middle temporal gyrus 10 25
-8 -64 44 Left precuneus 10 26
-40 5 26 Left precentral gyrus 10 27
-40 -41 35 Left intraparietal sulcus 10 27
-36 -48 43 Left intraparietal sulcus 10 27
-40 36 20 Left frontal gyrus 10 27
-26 12 4 Left Putamen 13 34
-46 6 16 Left precentral area 13 34
-38 12 12 Left insula 13 34
-20 -54 -28 Left cerebellum 13 34
-48 6 12 Left precentral gyrus 13 35
-26 16 0 Left claustrum 13 35
-55 -4 -5 Left superior and middle temporal gyrus 14 36
-55 -48 41 Left inferior parietal lobe 14 38
-55 -48 41 Left inferior parietal lobe 14 39
-38 -47 30 Left inferior parietal lobe 14 40
-59 -33 7 Left posterior superior temporal gyrus 14 41
-59 -6 -1 Left central superior and middle temporal gyri 14 41
-50 21 -3 Left inferior frontal gyrus 14 41
-55 16 7 Left frontal operculum 14 41
-22 -59 -9 Left cerebellar hemisphere 14 42
-38 -87 12 Left inferior occipital gyrus 14 42
-30 -37 6 Left hippocampus 14 42
-32 26 -27 Left temporal pole 14 43
-23 -79 28 Left superior occipital/parietal 15 44
-24 -64 -15 Left fusiform 15 44
-33 -72 -33 Left cerebellum 15 44
-8 -25 9 Left pulvinar 15 44
-55 -64 16 Left inferior parietal 15 44
-52 -33 11 Left middle/superior temporal 15 44
-3 -72 53 Left superior parietal 15 45
-43 -56 -3 Left fusiform 15 45
-4 -87 -5 Left lingual gyrus 15 45
-38 -95 13 Left middle/inferior occipital 15 45
-42 -79 32 Left superior parietal/occipital 15 46
-67 -33 -10 Left middle/inferior temporal 15 46
-23 -95 2 Left inferior occipital 15 46
-33 -87 23 Left middle occipital 15 46
-16 -87 12 Left cuneus 15 46
-39 -56 53 Left superior/inferior parietal 15 46
-38 -48 38 Left intraparietal 15 46
-24 -64 -24 Left cerebellum 15 46
-31 -56 -8 Left fusiform 15 46
-10 -25 12 Left pulvinar 15 46
-24 -66 -37 Left cerebellum 17 50
-32 -42 -32 Left cerebellum 17 50
-38 -54 -26 Left cerebellum 17 50
-22 -71 -23 Left cerebellum 17 50
-6 -10 -3 Left anterior mesencephalon 17 50
-4 -23 7 Left thalamus 17 50
-16 -8 2 Left globus pallidus 17 50
-6 17 29 Left caudal cingulate gyrus 17 50
-4 8 35 Left caudal cingulate gyrus 17 50
-4 2 42 Left caudal cingulate gyrus 17 50
-22 -4 67 Left superior frontal gyrus 17 50
-8 -17 51 Left middle frontal gyrus 17 50
-6 -14 69 Left middle frontal gyrus 17 50
-10 -35 72 Left postcentral and precentral gyrus 17 50
-65 5 13 Left inferior frontal gyrus 17 50
40 10 0 Left frontal insula 17 50
-45 -45 -18 Left fusiform gyrus 18 51
-36 -9 53 Left motor cortex 18 52
-46 -28 46 Left posterior central gyrus 19 53
-52 -28 23 Left supramarginal gyrus 19 53
-9 -26 23 Left posterior cingulate 19 53
-31 20 14 Left insula 19 53
-44 -2 7 Left insula 19 53
-10 6 13 Left posterolateral orbital cortex 20 65
-61 -14 -13 Left inferior temporal gyrus 20 65
-32 -77 -28 Left cerebellum 20 65
-12 -6 0 Left lentiform nucleus 21 190
-40 -37 28 Left sulcus intraparietalis 21 190
-55 6 42 Left precentral gyrus 21 190
-30 42 26 Left middle frontal gyrus 21 190
-14 15 38 Left sulcus callosomarginalis 21 190
-40 2 2 Left anterior insula 23 72
-30 -40 52 Left supramarginal gyrus 23 73
-22 -63 -19 Left cerebellum 23 73
-48 -49 39 Left angular gyrus 23 74
-6 -54 49 Left precuneus 23 74
-36 -2 2 Left anterior 23 75
-21 -61 53 Left superior parietal 24 77
-30 -50 52 Left superior parietal 24 77
-36 -41 57 Left intraparietal sulcus 24 77
-30 26 -4 Left ventrolateral prefrontal cortex 24 77
-45 7 27 Left inferior area 24 77
-12 -14 9 Left medial thalamus 24 77
-28 -60 47 Left intraparietal sulcus 25 78
-28 -60 47 Left intraparietal sulcus 25 79
-32 -2 41 Left precentral gyrus 25 79
-28 -60 47 Left intraparietal sulcus 25 80
-48 -29 46 Left postcentral sulcus/inferior parietal lobule 25 81
-40 -9 52 Left precentral gyrus/central sulcus 25 81
-28 -60 47 Left intraparietal sulcus 25 83
-24 -60 47 Left intraparietal sulcus 25 84
-32 -2 37 Left precentral gyrus 25 84
-24 -60 47 Left intraparietal sulcus 25 85
-28 -60 47 Left intraparietal sulcus 25 86
-61 -27 9 Left superior temporal gyrus 26 87
-38 23 3 Left inferior frontal gyrus 26 87
-30 -58 -32 Left cerebellum 26 87
-55 -25 7 Left superior temporal gyrus 26 88
-22 -80 -3 Left occipital lobe 26 88
-32 -54 -34 Left cerebellum 26 88
-22 -79 -11 Left posterior fusiform gyri 28 90
-21 -80 25 Left dorsal occipital 28 90
-32 -66 42 Left intraparietal sulcus 28 90
-33 -77 -8 Left inferior occipital gyri 28 91
-36 -54 -14 Left lateral fusiform gyri 28 91
-52 -44 -1 Left superior temporal gyri 28 91
-37 -78 -2 Left mid-occipital gyri 28 92
-27 -50 -13 Left medial fusiform gyri 28 92
-41 -63 -7 Left inferior temporal gyri 28 92
-21 -73 37 Left dorsal occipital 28 92
-43 -46 47 Left intraparietal sulcus 28 92
-21 -85 -16 Left posterior fusiform gyri 28 93
-25 -57 -11 Left medial fusiform gyri 28 93
-24 -76 35 Left dorsal occipital 28 93
-33 -50 55 Left intraparietal sulci 28 93
-34 -80 -17 Left inferior occipital gyri 28 94
-39 -63 -20 Left lateral fusiform gyri 28 94
-52 -51 3 Left superior temporal sulci 28 94
-39 -82 -7 Left mid-occipital gyri 28 95
-29 -55 -16 Left medial fusiform gyri 28 95
-42 -67 -8 Left inferior temporal gyri 28 95
-26 -79 24 Left dorsal occipital gyri 28 95
-43 -44 49 Left intraparietal sulci 28 95
-36 -57 -6 Left middle occipital gyrus 29 96
-42 -72 -8 Left fusiform gyrus 29 96
-36 -40 -13 Left fusiform gyrus 29 96
-36 -26 -19 Left parahippocampal gyrus 29 96
-36 -47 -11 Left fusiform gyrus 29 96
-44 -49 -13 Left fusiform gyrus 29 96
-28 -87 -1 Left middle occipital gyrus 29 96
-51 -70 -2 Left inferior temporal gyrus 29 96
-53 -57 -12 Left fusiform gyrus 29 96
-34 -1 -22 Left limbic lobe 29 96
-44 -63 -9 Left inferior temporal gyrus 29 98
-34 -78 30 Left occipital, parietal, temporal junction, middle occipital gyrus 30 100
-56 -74 -4 Left inferior-temporal gyrus, middle-temporal gyrus 30 100
-29 -96 -14 Left posterior fusiform gyrus 30 102
-36 -15 12 Left insula 32 110
-42 34 -20 Left middle frontal gyrus 34 114
-57 27 -1 Left inferior frontal gyrus 34 114
-36 52 -14 Left middle frontal gyrus 34 114
-51 38 13 Left inferior frontal gyrus 34 114
-65 7 20 Left precentral gyrus 34 114
-57 33 6 Left inferior frontal gyrus 34 114
-55 33 -8 Left inferior frontal gyrus 34 114
-59 19 -1 Left inferior frontal gyrus 34 115
-51 36 15 Left inferior frontal gyrus 34 115
-46 34 -19 Left middle frontal gyrus 34 115
-16 53 -19 Left middle frontal gyrus 34 115
-44 -14 40 Left precentral gyrus 35 116
-60 -30 0 Left middle temporal gyrus 35 116
-56 -38 28 Left inferior parietal lobe 35 117
-12 -70 52 Left precuneus 35 117
-18 0 -12 Left entorhinal cortex 35 117
-18 8 48 Left medial frontal gyrus 35 117
-40 -72 20 Left middle temporal gyrus 35 117
-44 -12 40 Left precentral gyrus 35 118
-30 20 4 Left anterior insula 35 118
-56 -34 28 Left inferior parietal lobe 35 119
-44 -66 12 Left middle temporal gyrus 35 119
-16 -2 -16 Left entorhinal cortex 35 119
-28 16 44 Left middle frontal gyrus 35 119
-34 32 24 Left middle frontal gyrus 35 119
-36 -64 -36 Left lateral cerebellum 35 120
-30 22 0 Left anterior insula 35 120
-38 -6 16 Left posterior insula 35 121
-42 -60 16 Left middle temporal gyrus 35 121
-50 -30 24 Left inferior parietal lobe 35 121
-30 -90 -16 Left fusiform gyrus 35 122
-36 -48 -19 Left fusiform gyrus 36 123
-43 -75 -10 Left lateral occipital cortex 36 123
-40 1 53 Left frontal 37 124
-3 -12 65 Left frontal 37 124
-29 15 48 Left frontal 37 124
-41 26 34 Left frontal 37 124
-22 48 29 Left frontal 37 124
-58 26 27 Left frontal 37 124
-42 55 7 Left frontal 37 124
-6 60 23 Left frontal 37 124
-47 -65 40 Left parietal 37 124
-67 -40 2 Left temporal 37 124
-13 -1 19 Left subcortical, caudate 37 124
-2 -39 20 Left subcortical, posterior cingulate 37 124
-43 6 50 Left frontal 37 125
-45 26 33 Left frontal 37 125
-23 59 5 Left frontal 37 125
-37 45 11 Left frontal 37 125
-10 60 18 Left frontal 37 125
-25 62 18 Left frontal 37 125
-50 -55 44 Left parietal 37 125
-58 -44 38 Left parietal 37 125
-60 -38 27 Left parietal 37 125
-62 5 -12 Left temporal 37 125
-15 2 14 Left subcortical, caudate 37 125
0 -27 28 Left subcortical, posterior cingulate 37 125
-28 -14 27 Left tail of caudate 38 126
-24 -99 3 Left occipital area 38 126
-22 51 18 Left superior frontal gyrus 38 126
-16 -25 -4 Left hippocampus 38 127
-53 -28 14 Left superior temporal gyrus 38 127
-51 -49 -8 Left inferior temporal gyrus 38 127
-46 22 4 Left inferior frontal gyrus 38 127
-10 64 4 Left superior frontal gyrus 38 129
-16 27 35 Left middle frontal gyrus 38 129
-16 -48 52 Left medial parietal cortex 38 130
-34 -40 -32 Left cerebellum 38 130
-7 24 0 Left subgenual anterior cingulate 39 132
0 55 -14 Left orbital frontal 39 132
-4 -34 62 Left precentral 39 132
-7 -21 38 Left posterior cingulate 39 132
-7 -7 41 Left middle cingulate 39 132
-7 -55 24 Left posterior cingulate 39 132
-55 31 3 Left inferior frontal 39 132
-21 55 38 Left superior frontal 39 132
-48 0 -17 Left superior temporal sulcus 39 132
-58 -24 -14 Left inferior and middle temporal 39 132
-38 24 24 Left middle frontal 39 132
-31 52 3 Left middle frontal 39 132
-17 -28 21 Left tail of caudate 39 132
-10 -7 7 Left thalamus and septum 39 132
-17 -45 -3 Left parahippocampal 39 132
-10 -3 -7 Left basal forebrain 39 132
-24 -58 -21 Left cerebellum 39 132
-10 24 -10 Left subgenual anterior cingulate 39 133
-3 58 10 Left frontal pole 39 133
-34 38 21 Left middle frontal 39 133
-55 31 -3 Left inferior frontal 39 133
-34 10 -21 Left temporal pole 39 133
-48 17 45 Left middle frontal 39 133
-48 -38 17 Left planum temporale 39 133
-3 -76 -17 Left medial cerebellum 39 133
-24 -30 64 Left superior parietal cortex 40 134
-44 -29 42 Left inferior anterior parietal cortex 40 134
-24 62 8 Left superior frontal gyrus 41 135
-49 32 26 Left middle frontal gyrus 41 135
-59 13 -16 Left superior temporal gyrus 41 135
-38 -61 53 Left superior parietal lobule 41 135
-4 -70 37 Left precuneus 41 135
-4 -36 24 Left posterior cingulate gyrus 41 135
-49 20 -16 Left superior temporal gyrus 41 136
-21 62 19 Left superior frontal gyrus 41 137
-4 29 26 Left anterior cingulate gyrus 41 137
-4 -35 29 Left posterior cingulate gyrus 41 137
-51 22 -16 Left superior temporal gyrus 41 137
-14 -101 11 Left striate cortex 41 137
-10 -94 21 Left cuneus 41 137
-42 20 49 Left middle frontal gyrus 41 138
-62 10 5 Left precentral gyrus 41 138
-42 -61 53 Left superior parietal lobule 41 138
-4 -35 40 Left posterior cingulate gyrus 41 138
-14 -69 48 Left precuneus 41 139
-18 -63 20 Left cuneus 41 139
-46 16 49 Left middle frontal gyrus 41 140
-50 12 12 Left frontal operculum 44 147
-25 -83 42 Left occipitoparietal 48 153
-23 -87 41 Left Occipitoparietal 48 154
-7 -59 -12 Vermis - left cerebellum 48 154
-25 -81 43 Left occipitoparietal 48 155
-26 -50 46 Left middle intraparietal sulcus 48 156
-22 -80 43 Left occipitoparietal 48 156
-10 14 52 Left medial frontal gyrus 49 160
-10 -66 44 Left precuneus 49 160
-22 22 44 Left middle frontal gyrus 49 160
-38 28 32 Left middle frontal gyrus 49 160
-34 -74 20 Left middle occipital gyrus 49 160
-36 32 16 Left inferior frontal gyrus 49 162
-50 -20 -8 Left middle temporal gyrus 49 162
-28 30 -12 Left inferior frontal gyrus 49 162
-40 -22 -12 Left hippocampal gyrus 49 162
-54 -48 -24 Left cerebellum 49 162
-28 -56 44 Left superior parietal lobule 49 163
-28 -84 4 Left cuneus 49 163
-2 -48 20 Left posterior cingulate gyrus 49 164
-38 28 24 Left middle frontal gyrus 49 164
-36 32 16 Left inferior frontal gyrus 49 164
-54 -26 0 Left middle temporal gyrus 49 164
-26 -32 -8 Left parahippocampal gyrus 49 164
-56 -40 -20 Left inferior temporal gyrus 49 164
-48 -52 -36 Left cerebellum 49 164
-50 -10 -8 Left middle temporal gyrus 49 165
-30 24 -12 Left inferior frontal gyrus 49 165
-46 -38 -28 Left cerebellum 49 165
-26 -92 4 Left cuneus 49 166
-43 -70 26 Left angular gyrus 50 168
-9 -55 24 Left posterior cingulate 50 168
-20 30 44 Left dorsal prefrontal cortex 50 168
-26 -35 -12 Left parahippocampal gyrus 50 168
-9 34 -7 Left rostral cingulate sulcus 50 168
-26 28 -8 Left orbital sulcus 50 168
-51 26 14 Left inferior frontal gyrus 50 168
-45 -71 31 Left angular gyrus 50 169
-8 -55 15 Left posterior cingulate 50 169
-17 27 48 Left dorsal prefrontal cortex 50 169
-26 -35 -16 Left parahippocampal gyrus 50 169
-42 34 -22 Left inferior frontal gyrus 51 170
-48 40 -17 Left inferior frontal gyrus 51 170
-28 5 53 Left superior frontal sulcus 51 170
-61 5 29 Left precentral sulcus 51 170
-4 -63 62 Left precuneus 51 170
-30 -51 62 Left intraparietal sulcus 51 170
-36 -38 -30 Left cerebellum 51 170
-16 5 51 Left superior frontal sulcus 51 171
-30 -1 50 Left superior frontal sulcus 51 171
-10 -57 56 Left precuneus 51 171
-32 -67 53 Left superior parietal lobe 51 171
-32 -35 35 Left supramarginal gyrus 51 171
-38 -49 -40 Left cerebellum 51 171
-16 -63 -14 Left cerebellum 51 171
-38 -52 -28 Left cerebellum 51 171
-32 -89 6 Left prestriate 52 172
-44 6 -4 Left middle insula 54 176
-4 30 21 Left anterior cingulate 54 176
-22 -1 22 Left caudate nucleus (dorsal head) 54 176
-22 0 9 Left putamen (medial dorsal) 54 176
-38 -33 -7 Left posterior hippocampus 54 176
-4 -59 -21 Left vermis 54 176
-44 17 38 Left middle frontal gyrus 54 177
-44 24 21 Left prefrontal cortex 54 177
-57 -3 -18 Left temporal cortex, middle gyrus/pole 54 177
0 -51 23 Left posterior cingulate 54 177
-10 10 3 Left caudate nucleus 54 177
-22 -11 -21 Left amygdaloid region 54 177
-36 -20 23 Left posterior insula 56 180
-36 -20 23 Left posterior insula 56 181
-38 -4 0 Left Mid-/anterior insula 58 184
-30 24 5 Left anterior insula 60 186
-39 -18 19 Left posterior insula 60 186
-56 -3 0 Left inferior frontal gyrus 60 186
-9 12 32 Left anterior cingulate gyrus 60 186
-36 -60 -25 Left cerebellum 60 186
-53 -3 7 Left middle insula 60 187
-39 -18 19 Left posterior insula 60 187
-6 7 35 Left middle cingulate gyrus 60 187
-36 22 -4 Left anterior insula 60 188
-36 12 1 Left middle insula 60 188
-3 20 31 Left anterior cingulate gyrus 60 188
-18 -68 -13 Left cerebellum 60 188
-27 36 17 Left medial frontal gyrus 60 188
-36 9 7 Left middle insula 60 189
-56 3 0 Left inferior gyrus 60 189
-3 7 35 Left medial frontal gyrus 60 189
-59 -39 -8 Left temporal/posterior parietal cortex 61 191
-51 -54 14 Left temporal/posterior parietal cortex 61 191
-22 -18 -2 Left putamen/pallidum 61 192
-31 -28 -7 Left hippocampus 63 196
-24 -8 -21 Left hippocampus 63 197
-38 -59 -16 Left fusiform gyrus 64 198
-61 -10 -3 Left superior temporal gyrus 64 199
-42 -31 9 Left Heschl's gyrus 64 199
-50 14 14 Left inferior frontal gyrus 64 199
-4 -56 6 Left retrosplenial cortex 64 200
-52 -20 -4 Left medial/superior temporal gyrus 68 207
-10 -82 -28 Left cerebellum 68 208
-16 -62 48 Left medial parietal cortex 68 210
-44 -32 24 Left inferior lateral parietal cortex 68 210
-14 14 16 Left caudate nucleus 68 210
-6 -14 -16 Left midbrain 68 210
-46 -38 28 Left lateral inferior parietal cortex 68 211
-44 -62 -8 Left inferior occipital cortex 68 211
-50 -56 28 Left lateral inferior parietal cortex 68 212
-38 42 12 Left inferior frontal cortex 68 212
-44 -62 -8 Left inferior occipital cortex 68 212
-40 -25 4 Left insula 71 220
-26 -14 -13 Left amygdala 71 220
-26 -6 -7 Left amygdala 71 220
-3 42 15 Left medial frontal cortex 71 223
-14 -72 -7 Left peristriate cortex 71 223
-32 22 15 Left anterior insula 71 223
-26 -50 -7 Left inferior-posterior temporal cortex 71 223
-40 -47 -7 Left inferior-posterior temporal cortex 71 223
-43 -36 15 Left superior temporal cortex 71 223
-20 -72 -7 Left peristriate cortex 71 224
-34 8 50 Left middle frontal gyrus 73 228
-6 16 60 Left middle frontal gyrus 73 228
-50 20 -1 Left inferior frontal gyrus 73 228
-25 40 30 Left middle frontal gyrus 73 228
-50 40 14 Left inferior frontal gyrus 73 228
-10 58 37 Left superior frontal gyrus 73 228
-18 -4 59 Left superior frontal gyrus 73 228
-60 -8 -4 Left middle temporal gyrus 73 228
-52 -8 44 Left precentral gyrus 73 228
-23 -20 -11 Left hippocampus 73 228
-51 -28 14 Left superior temporal sulcus 73 228
-28 -35 -11 Left fusiform gyrus 73 228
-54 -35 21 Left inferior parietal 73 228
-10 -55 15 Left precuneus 73 228
-51 -71 20 Left superior occipital/angular 74 229
-40 -78 35 Left superior occipital 74 229
-8 -33 40 Left posterior cingulate 74 229
-8 -36 57 Left paracentral lobule/anterior precuneus 74 229
-4 -30 53 Left paracentral lobule 74 229
-6 -47 26 Left posterior cingulate 74 229
-20 32 52 Left superior frontal sulcus 74 229
-18 41 42 Left superior frontal 74 229
-24 26 47 Left middle frontal 74 229
-32 23 38 Left middle frontal 74 229
-46 36 15 Left inferior frontal (triangularis) 74 229
-4 57 8 Left median superior frontal 74 229
0 37 -4 Left anterior cingulate 74 229
-4 44 -6 Left anterior cingulate 74 229
-4 48 -7 Left anterior cingulate 74 229
-46 47 -2 Left middle frontal sulcus 74 229
-26 34 -10 Left orbital superior frontal 74 229
-18 62 6 Left superior frontal 74 229
-28 14 9 Left insula 76 233
-8 23 27 Left anterior cingulate cortex 76 233
-10 -25 9 Left thalamus 76 233
24 30 -22 Left orbito-frontal cortex 76 233
-30 12 7 Left insula 76 234
-24 16 7 Left putamen 76 235
-10 5 16 Left caudate nucleus 76 235
-20 10 14 Left insula 76 238
-12 -23 10 Left thalamus 76 238
-55 -50 43 Left parietal cortex 76 238
-20 -3 15 Left caudate nucleus 76 238
-18 24 10 Left caudate nucleus 76 239
-38 -7 3 Left insular cortex 77 242
-37 -39 -22 Left perirhinal cortex 77 242
-59 -5 -15 Left anteriolateral middle temporal gyrus 78 243
-48 10 -24 Left temporal pole 78 243
-22 -12 -11 Left hippocampus 78 243
-30 -36 -13 Left parahippocampal gyrus 78 243
-48 -61 25 Left temporoparietal junction 78 243
-28 -16 -13 Left hippocampus 78 244
-35 -6 7 Left insula 79 245
-17 -10 16 Left thalamus 79 247
-6 -8 30 Left anterior cingulate cortex 79 249
0 -65 34 Left precuneus 80 251
-48 -53 47 Left lateral parietal cortex, inferior parietal gyrus 80 251
-21 62 16 Anterior left prefrontal cortex, superior frontal gyrus 80 251
-42 -68 -3 Left inferior/middle occipital gyrus 81 253
-18 -65 57 Left posterior superior parietal lobule 81 253
-20 -68 -39 Left cerebellum 81 253
-46 1 29 Left middle frontal gyrus/precentral sulcus 81 253
-28 0 44 Left posterior superior frontal sulcus 81 253
-18 -29 5 Left posterior thalamus 81 253
-14 43 0 Left/right anterior cingulate gyri 81 254
4 55 10 Left/right superior frontal gyri 81 254
-26 29 39 Left anterior middle frontal gyrus 81 254
-48 -55 34 Left angular/supramarginal/superior temporal gyrus 81 254
-55 -17 17 Left superior temporal gyrus 81 254
-57 -18 -16 Left middle temporal gyrus 81 254
-26 -84 -6 Left posterior fusiform gyrus 81 255
-40 -56 -24 Left cerebellum 82 256
-40 0 6 Left insula 82 256
-14 -7 13 Left thalamus 82 256
-12 51 5 Left superior frontal 82 257
-6 48 -11 Left dorsal frontal 82 257
-48 -59 27 Left superior temporal 82 257
-63 -39 -1 Left middle temporal 82 258
-55 -37 7 Left superior temporal 82 258
-38 -1 17 Left insula 82 260
-18 -46 6 Left parahippocampal gyrus 82 260
-26 -12 4 Left basal ganglia (globus pallidus) 84 270
-34 -1 -45 Left anterior inferior temporal 85 271
-3 12 32 Left anterior cingulate 85 271
-22 -67 -42 Left cerebellum 85 271
-24 25 37 Left superior frontal 85 272
-28 18 -24 Left inferior superior frontal 85 272
-49 -44 -19 Left posterior inferior temporal 85 272
-45 -62 19 Left angular/supramarginal 85 272
-56 -28 26 Left parietal 85 272
-24 -5 -21 Left amygdala 85 272
-36 14 -3 Left frontal 85 273
-36 -1 -45 Left anterior inferior temporal 85 273
-25 -64 -40 Left cerebellum 85 273
-45 -62 18 Left angular/supramarginal 85 274
-55 -31 28 Left parietal 85 274
-13 -73 22 Left precuneus 85 274
-28 45 -10 Left anterior inferior frontal 85 275
-23 29 38 Left anterior superior frontal 85 275
-42 -77 6 Left middle occipital gyrus 88 279
-40 -48 -9 Left fusiform gyrus 88 279
-50 -50 15 Left superior temporal gyrus 88 279
-12 -71 -12 Left lingual gyrus 88 279
-38 -58 42 Left inferior parietal lobule 88 280
-48 -42 45 Left inferior parietal lobule 88 280
-58 -42 -7 Left middle temporal gyrus 88 280
-2 34 0 Left anterior cingulate 88 280
-44 30 9 Left inferior and middle frontal gyrus 88 280
-22 36 -18 Left orbitofrontal gyrus 88 280
-24 25 38 Left middle frontal gyrus 88 280
-20 48 -3 Left superior frontal gyrus 88 280
0 28 30 Left cingulate gyrus 88 280
-4 -24 28 Left posterior cingulate gyrus 88 280
-44 -72 17 Left middle temporal gyrus 88 281
-58 -14 0 Left superior temporal gyrus 88 282
-36 13 -21 Left superior temporal gyrus 88 282
-44 -9 -31 Left inferior temporal gyrus 88 282
-52 -54 22 Left superior temporal gyrus 88 282
-40 -84 -6 Left inferior occipital gyrus 88 282
-46 -6 38 Left precentral gyrus 88 282
-48 -2 38 Left precentral gyrus 88 282
0 -58 -17 Left cerebellum 88 282
-58 -48 -9 Left inferior temporal lobule 88 283
-44 32 9 Left inferior frontal lobule 88 283
-30 59 3 Left middle frontal lobule 88 283
46 40 -4 Left middle frontal gyrus 88 283
-36 -56 42 Left inferior parietal lobule 88 283
-50 -41 42 Left inferior parietal lobule 88 283
-22 36 -18 Left orbitofrontal lobe 88 283
-4 -25 33 Left gyrus cinguli 88 283
-2 -91 -4 Left lingual gyrus 88 283
-56 -16 -1 Left superior temporal gyrus 88 284
-32 11 -15 Left inferior frontal gyrus 88 284
-40 6 48 Left middle frontal gyrus 89 285
-12 5 -12 Left posterior rectal 89 285
-38 -70 40 Left superior occipital gyrus 89 285
-2 -50 19 Left posterior cingulate 90 289
-1 -62 22 Left precuneus 90 289
-2 -74 22 Left cuneus 90 289
-6 46 -16 Left orbital frontal 90 289
-44 6 37 Left midfrontal 91 291
-28 23 39 Left midfrontal 91 291
-51 -53 21 Left superior temporal 91 291
-50 -54 14 Left midtemporal 91 291
-46 -72 4 Left inferior temporal 91 291
-28 -57 -4 Left fusiform 91 291
-28 -56 -1 Left lingual 91 291
-36 -35 -5 Left parahippocampal 91 291
-48 -56 43 Left inferior parietal 91 291
-50 -55 25 Left inferior parietal 91 291
-8 -70 44 Left precuneus 91 291
-38 -76 26 Left occipital 91 291
-44 -77 15 Left midoccipital 91 291
-32 -93 1 Left inferior occipital 91 291
-22 54 27 Left superior frontal 91 292
-48 8 36 Left midfrontal 91 292
-44 38 24 Left midfrontal 91 292
-48 27 -5 Left inferior frontal 91 292
-67 -14 -9 Left midtemporal 91 292
-63 -39 35 Left inferior parietal 91 292
-57 -53 32 Left supramarginal 91 292
-36 -23 38 Left precentral-postcentral 91 292
-6 6 3 Left caudate (head) 93 294
-30 -20 -16 Left parahippocampal gyrus 93 295
-34 -68 -3 Left Occipito-temporal cortex 93 295
-40 -67 -10 Left cerebellum 93 295
-18 -6 -12 Left amygdaloid complex 96 300
-10 -22 4 Left thalamus 96 300
-20 44 -8 Left dorsolateral prefrontal cortex 96 301
-44 -50 36 Left parietal cortex 96 301
-45 23 -13 Gyrus frontalis inferior, left 97 302
-36 0 6 Insula, left 97 302
-48 23 -13 Gyrus frontalis inferior, left 97 303
-50 33 11 Gyrus frontalis med., left 97 303
-48 23 -13 Gyrus frontalis inferior, left 97 304
-56 -49 9 Gyrus temporalis med., left 97 304
-49 -19 26 Postcentral gyrus, left 98 305
-32 31 15 Dorsolateral prefrontal cortex, left 98 305
-6 50 15 Medial prefrontal cortex, left 98 305
-6 -58 15 Posterior cingulate gyrus, left 98 306
-29 -3 20 Insula, left 98 306
-3 44 4 Anterior cingulate gyrus, left 98 307
-14 -56 15 Posterior cingulate gyrus, left 98 307
-43 -14 15 Supramarginal gyrus, left 98 307
-40 -17 20 Supramarginal gyrus, left 98 307
0 29 9 Medial frontal cortex, right/left 98 307
-20 -11 20 Caudate nucleus, left 98 308
-40 -17 20 Supramarginal gyrus, left 98 309
-49 -33 20 Supramarginal gyrus, left 98 309
-20 -89 -7 Middle occipital cortex, left 98 309
-12 -75 -7 Middle occipital cortex, left 98 309
-20 -78 -7 Middle occipital cortex, left 98 309
-9 -83 4 Middle occipital cortex, left 98 309
-3 -18 9 Left thalamus 99 310
-6 -9 34 Left anterior cingulate gyrus 99 310
-4 -15 34 Left posterior cingulate gyrus 99 310
-44 -37 39 Left parietal cortex 99 310
-26 -20 12 Left thalamus (and adjacent cortex) 101 314
-42 26 -4 Left inferior frontal cortex 101 314
-10 -68 20 Left peristriate cortex 101 315
-10 -12 4 Left thalamus 101 317
-6 -30 36 Left posterior cingulate 101 317
-56 -46 20 Left superior temporal 101 317
-6 -61 7 Left posterior gyrus cinguli 103 321
-7 65 -8 Left orbitofrontal cortex 103 321
-45 -7 16 Left operculum 103 322
-49 -30 21 Left angular gyrus 103 322
-20 -30 0 Left hippocampus 104 323
-18 -100 8 Left cuneus 104 323
-10 -32 40 Left posterior cingulate gyrus 104 323
-44 -62 4 Left anterior middle temporal gyrus 104 324
-38 -58 32 Left supramarginal gyrus 104 324
-16 20 28 Left anterior cingulate 105 325
-18 -100 -16 Left ventral occipital cortex 105 325
-10 18 28 Left anterior cingulate 105 326
-14 -102 -16 Left ventral occipital cortex 105 326
-10 18 28 Left anterior cingulate 105 327
-14 -102 -16 Left ventral occipital cortex 105 327
-20 46 -4 Left medial frontal cortex 105 328
-22 26 4 Left caudate/insula 105 329
-50 -64 24 Left middle temporal gyrus 105 329
-4 -19 5 Left mediodorsal nucleus of thalamus 107 333
-48 6 33 Left precentral gyrus 107 334
-48 -5 -13 Left superior temporal gyrus 107 335
-12 -38 9 Left posterior cingulate gyrus 107 336
-32 -40 56 Left parietal 108 337
-32 -42 52 Left parietal 108 337
-18 -28 52 Left dorsal cingulate bank 108 337
-22 -34 48 Left dorsal cingulate bank 108 337
-32 -34 44 Left parietal 108 337
-34 -30 40 Left parietal 108 337
-42 -34 16 Left temporal cortex 108 337
-28 -6 16 Left insular cortex 108 337
-28 -6 12 Left putamen 108 337
-51 43 2 Left lateral frontal 110 339
-51 32 22 Left lateral frontal 110 339
-48 31 -8 Left lateral frontal 110 339
-34 12 36 Left lateral frontal 110 339
-26 -62 40 Left parietal 110 339
-24 -101 -3 Left occipital 110 339
-38 -91 -2 Left occipital 110 339
-53 32 19 Left lateral frontal 110 340
-50 31 -8 Left lateral frontal 110 340
-50 45 -2 Left lateral frontal 110 340
-24 -101 -3 Left occipital 110 341
-6 -79 6 Left occipital 110 341
-44 -58 14 Left temporo-occipital junction 111 342
-50 16 18 Left inferior frontal gyrus, temporal pole 111 342
-2 8 57 Left dorsal anterior cingulate cortex 111 342
-46 -64 -9 Left temporo-occpital junction 111 343
-50 10 24 Left inferior frontal gyrus, temporal pole 111 343
-61 -41 38 Left parietal 112 344
-59 -30 -14 Left temporal 112 344
-43 20 47 Left prefrontal 112 344
-49 2 17 Left inferior frontal gyrus 113 345
-37 -74 25 Left angular gyrus 113 345
-29 -82 18 Left extrastriate cortex 113 345
-44 -49 8 Left superior and midtemporal gyri 113 345
-47 -49 42 Left supramarginal gyrus 113 345
-12 57 2 Left medial prefrontal cortex 116 349
-4 57 17 Left superior frontal gyrus 116 349
-38 25 35 Left middle frontal gyrus 116 349
-35 15 7 Left insular 116 349
-53 -27 36 Left inferior frontal gyrus 116 349
-36 -46 62 Left superior parietal lobule 116 349
-2 31 38 Left superior frontal gyrus 116 350
-50 -7 30 Left precentral gyrus 116 350
-5 -12 60 Left medial/superior frontal gyrus 116 350
-17 -43 69 Left postcentral gyrus 116 350
-39 -78 8 Left middle occipital gyrus 116 351
-12 -83 26 Left cuneus 116 351
-4 -67 2 Left lingual gyrus 116 351
-32 43 13 Left middle frontal gyrus 116 352
-42 29 17 Left inferior frontal gyrus 116 352
-36 18 1 Left insular 116 352
-48 -29 48 Left inferior parietal lobule 116 352
-19 -56 54 Left superior parietal lobule 116 352
-5 -41 56 Left precuneus 116 352
-26 -2 46 Left middle frontal gyrus 116 353
-2 -43 24 Left posterior cingulate gyrus 116 353
-7 63 15 Left medial prefrontal cortex 116 354
-23 31 47 Left superior frontal gyrus 116 354
-23 19 34 Left middle frontal gyrus 116 354
-39 -13 14 Left insular 116 354
-47 -20 -34 Left fusiform 116 354
-7 -26 69 Left precentral gyrus 116 354
-63 -26 -16 Left middle temporal gyrus 116 354
-47 -34 -18 Left inferior temporal gyrus 116 354
-23 -39 76 Left postcentral gyrus 116 354
-15 -40 3 Left hippocampal gyrus 116 354
-30 -60 -35 Left cerebellum 116 354
-7 -74 32 Left cuneus 116 354
-3 50 0 Left medial prefrontal cortex 116 355
-9 24 61 Left superior frontal gyrus 116 355
-32 15 56 Left middle frontal gyrus 116 355
-42 6 5 Left insular 116 355
-7 -52 58 Left precuneus 116 355
-57 -51 34 Left inferior parietal lobule 116 355
-36 -58 59 Left superior parietal lobule 116 355
-29 -76 32 Left superior occipital gyrus 116 355
-36 -78 11 Left middle occipital gyrus 116 355
-2 -88 19 Left cuneus 116 355
-12 3 58 Left superior frontal gyrus 116 356
-22 -12 58 Left precentral gyrus 116 356
-33 -34 60 Left postcentral gyrus 116 356
-13 -54 -7 Left cerebellum 116 356
-2 -69 6 Left lingual gyrus 116 356
-18 -2 62 Left superior frontal 116 357
-2 -7 57 Left medial superior frontal gyrus 116 357
-37 -13 52 Left precentral gyrus 116 357
-26 -49 -11 Left fusiform gyrus 116 357
-35 51 37 Left superior frontal gyrus 116 358
-62 13 4 Left inferior frontal gyrus 116 358
-55 11 42 Left middle frontal gyrus 116 358
-39 9 50 Left middle frontal gyrus 116 358
-23 -14 63 Left precentral gyrus 116 358
-58 -17 -8 Left middle temporal gyrus 116 358
-39 -35 61 Left postcentral gyrus 116 358
-31 -55 -7 Left fusiform gyrus 116 358
-63 -70 -35 Left cerebellum 116 358
-24 37 17 Left superior frontal gyrus 116 359
-23 14 -37 Left superior temporal gyrus 116 359
-43 14 10 Left inferior frontal 116 359
-9 -1 42 Left cingulate gyrus 116 359
-33 -13 52 Left precentral gyrus 116 359
-27 -4 9 Left putamen 116 359
-42 -29 57 Left postcentral gyrus 116 359
-38 -38 4 Left middle temporal gyrus 116 359
-39 -44 50 Left superior parietal lobule 116 359
-57 -52 31 Left inferior parietal lobule 116 359
-20 -38 -41 Left cerebellum 116 359
-40 -62 -33 Left cerebellum 116 359
-12 -71 36 Left precuneus 116 359
-4 -11 43 Left cingulate gyrus 116 361
-16 -45 73 Left postcentral gyrus 116 361
-2 -51 42 Left cingulate gyrus 116 361
-39 -80 10 Left middle occipital gyrus 116 361
-7 -88 31 Left cuneus 116 361
-13 -96 -2 Left lingual gyrus 116 361
4 -19 2 Left thalamus (medio-dorsal nucleus) 119 369
-52 -19 16 Left supramarginal gyrus 119 369
-4 12 4 Left mediodorsal thalamic nucleus 119 370
-58 -18 20 Left inferior supramarginal gyrus 119 370
-60 -12 -8 Left middle temporal gyrus 119 370
-22 -20 -12 Left hippocampus 121 374
-54 -63 27 Left superior occipital sulcus 121 374
-38 26 13 Left inferior frontal gyrus 121 375
-49 1 26 Left inferior precentral gyrus 121 375
-33 -57 48 Left intraparietal sulcus 121 375
-47 -68 3 Left fusiform gyrus 121 375
-42 16 -4 Left inferior frontal gyrus 121 376
-54 -63 27 Left superior occipital sulcus 121 376
-49 1 26 Left inferior precentral gyrus 121 377
-33 -57 48 Left intraparietal sulcus 121 377
-47 -68 3 Left fusiform gyrus 121 377
-42 16 -4 Left inferior frontal gyrus 121 378
29 17 46 Left superior frontal sulcus 121 379
-33 -57 48 Left intraparietal sulcus 121 379
-12 -3 9 Left thalamus 122 380
-30 44 20 Left prefrontal cortex 122 380
-4 -66 42 Left superior parietal cortex 122 380
-34 -29 1 Left posterior insula 122 380
-26 -67 -15 Left cerebellum 122 380
-2 -28 -17 Left dorsal rostral pons 122 380
-26 -63 -9 Left fusiform gyrus 124 385
-18 -85 15 Left middle occipital gyrus 124 385
-32 -87 -34 Left cerebellum 124 386
-63 -51 30 Left supramarginal gyrus 124 386
-65 -43 33 Left supramarginal gyrus 124 386
-12 -7 15 Left thalamus 124 386
-46 16 1 Left inferior frontal cortex 125 387
-18 -89 -22 Left cerebellum 125 387
-8 39 7 Left anterior cingulate cortex 125 387
-48 16 1 Left inferior frontal cortex 125 388
-18 -89 -22 Left cerebellum 125 388
-8 43 9 Left anterior cingulate cortex 125 388
12 -25 -2 Left hippocampus 126 389
-44 -41 2 Left middle temporal gyrus 126 390
-38 2 37 Left precentral gyrus/frontal lobe 128 393
-34 -90 -4 Left posterior fusiform 129 394
46 -66 -8 Left temporo-occipital 129 394
-44 -74 6 Left inferior and middle occipital 129 394
-26 -61 53 Left superior parietal 129 394
-46 -63 -20 Left cerebellum 129 394
-34 -90 -4 Left posterior fusiform 129 395
46 -66 -8 Left temporo-occipital 129 395
-44 -74 6 Left inferior and middle occipital 129 395
-26 -61 53 Left superior parietal 129 395
-46 -63 -20 Left cerebellum 129 395
-51 -54 6 Left posterior middle temporal 129 395
-57 -54 8 Left posterior middle temporal 129 395
-50 -4 43 Left precentral 129 395
-34 -90 -4 Left posterior fusiform 129 396
46 -66 -8 Left temporo-occipital 129 396
-44 -74 6 Left inferior and middle occipital 129 396
-26 -61 53 Left superior parietal 129 396
-46 -63 -20 Left cerebellum 129 396
-57 -14 -6 Left anterior middle temporal 129 396
-51 -54 6 Left posterior middle temporal 129 396
-57 -54 8 Left posterior middle temporal 129 396
-50 -4 43 Left precentral 129 396
-44 3 26 Left inferior frontal sulcus 129 396
-40 31 -8 Left anterior inferior frontal 129 396
-34 -90 -4 Left posterior fusiform 129 397
46 -66 -8 Left temporo-occipital 129 397
-26 -61 53 Left superior parietal 129 397
-57 -14 -6 Left anterior middle temporal 129 397
-50 -4 43 Left precentral 129 397
-44 3 26 Left inferior frontal sulcus 129 397
-40 31 -8 Left anterior inferior frontal 129 397
-34 -90 -6 Left posterior fusiform 129 399
-44 -66 -7 Left temporo-occipital 129 399
-28 -93 12 Left inferior and middle occipital 129 399
-44 -7 56 Left precentral 129 399
-34 -90 -6 Left posterior fusiform 129 400
-44 -66 -7 Left temporo-occipital 129 400
-28 -92 16 Left inferior and middle occipital 129 400
-44 -7 56 Left precentral 129 400
-32 -90 -6 Left posterior fusiform 129 401
-44 -66 -7 Left temporo-occipital 129 401
-28 -93 12 Left inferior and middle occipital 129 401
-44 -7 56 Left precentral 129 401
-50 -43 -10 Left middle temporal gyrus 131 405
-30 -28 -17 Left medial temporal cortex 131 405
-38 -49 26 Left subcortical parietal lobe 131 405
-28 36 28 Left dorsolateral prefrontal 132 406
-2 -47 -14 Left cerebellum 132 406
-20 -9 -18 Left amygdala 132 409
-45 17 -3 Left frontal operculum 134 411
-32 -2 -45 Left temporal 134 411
-38 -35 10 Left planum/Heschl's gyrus 134 411
-17 -4 0 Left thalamus/globus pallidus 134 411
-9 -57 -18 Bilateral cerebellum (right greater than left) 134 411
-13 -82 -45 Left cerebellum 134 411
-49 -40 -19 Left inferior posterior temporal 134 412
-55 -40 32 Left parietal 134 412
-35 16 -3 Left frontal operculum 134 413
-12 -13 3 Left thalamus 134 413
35 -63 -24 Bilateral cerebellum (right greater than left) 134 413
-28 -60 -34 Left cerebellum 134 413
-44 -60 18 Left angular/supramarginal 134 414
-44 2 44 Left dorsolateral frontal 134 415
-38 -35 12 Left planum/Heschl's gyrus 134 415
-34 45 -13 Left inferior frontal 134 416
-32 23 -2 Left frontal operculum 134 416
-43 -42 19 Left inferior posterior temporal 134 416
-36 -47 40 Left parietal 134 416
-41 -63 -34 Left cerebellum 134 416
-28 48 -4 Left ventral frontal cortex 135 417
-40 -60 4 Left medial occipital gyrus 135 417
-30 -56 28 Left inferior parietal lobe 135 417
-22 0 40 Left precentral sulcus/callosomarginal sulcus 135 417
-22 -64 44 Left posterior superior parietal lobe 135 417
-6 -84 28 Left cuneus 135 418
-10 -18 4 Left posterior thalamus 135 418
-22 10 8 Left putamen 135 418
-46 2 12 Left precentral gyrus 135 418
-40 -40 48 Left inferior parietal lobe 135 418
-12 -64 44 Left posterior superior parietal lobe 135 418
-36 12 0 Left insula/inferior frontal gyrus 135 419
-46 -38 24 Left superior temporal gyrus/inferior parietal lobe 135 419
-18 -58 32 Left posterior superior parietal lobe 135 419
-36 -8 44 Left precentral sulcus 135 419
-2 -17 8 Left hypothalamus 137 424
-40 11 -7 Left insula 137 424
-20 -12 2 Left basal ganglia 137 424
-44 -65 22 Left middle temporal gyrus 138 425
-10 44 -4 Left anterior cingulate gyrus 138 426
-42 9 24 Left mid-dorsal lateral prefrontal cortex 141 431
-48 41 9 Left medial lateral prefrontal cortex 141 431
-32 61 8 Left medial lateral prefrontal cortex 141 431
0 -9 12 Left/right medial dorsal thalamus 141 431
-14 -3 13 Left caudate tail 141 431
-18 15 -2 Left lentiform nucleus 141 431
-44 7 29 Left mid-dorsal lateral prefrontal cortex 141 432
-32 21 -4 Left ventral lateral prefrontal cortex 141 432
-14 1 15 Left caudate tail 141 432
-42 -36 52 Left inferior parietal lobule 141 432
-4 -24 -14 Left brainstem 141 432
-14 51 7 Left medial lateral prefrontal cortex 141 433
-22 -31 11 Left lateral dorsal thalamus 141 433
-38 -48 54 Left inferior parietal lobule 141 433
-34 -80 -6 Left inferior occipital gyrus 141 433
-51 -65 -10 Left 141 433
-30 -5 -30 Left perirhinal cortex 142 434
-22 -26 -12 Left hippocampus 142 434
-42 -57 -7 Left posterior fusiform cortex 142 435
-32 -26 -17 Left parahippocampal gyrus 142 435
-24 -7 -28 Left perirhinal cortex 142 436
-23 -39 -13 Left parahippocampal gyrus 143 438
-23 -36 -7 Left parahippocampal gyrus 143 438
-6 -36 31 Left posterior cingulate gyrus 143 438
-6 -53 9 Left retrosplenial cortex 143 439
-30 10 59 Left superior and middle frontal gyri 144 440
-10 -73 61 Left parietal lobule 144 440
-36 -75 -31 Left cerebellum 144 440
-44 48 24 Left superior and middle frontal gyri 144 441
-33 -76 -21 Left cerebellum, decline 144 441
-44 -56 -41 Left cerebellar tonsils 144 441
-12 14 46 Left middle frontal gyrus 144 442
-34 -1 72 Left superior frontal gyrus 144 442
-17 -55 47 Left precuneus 144 442
-22 -17 -6 Left lentiform nucleus 144 442
-34 -56 -24 Left fusiform gyrus 145 443
-44 -60 -22 Left fusiform gyrus 145 443
-26 -90 -2 Left inferior occipital gyrus 145 443
-22 -6 -20 Left entorhinal cortex 145 443
-32 -90 -2 Left inferior occipital gyrus 145 444
-30 -88 -12 Left inferior occipital gyrus 145 444
-32 -70 -18 Left fusiform gyrus 145 444
-14 8 -18 Left entorhinal cortex 145 445
-10 8 -18 Left entorhinal cortex 145 445
-57 -3 -18 Left middle temporal gyrus 147 450
-14 60 26 Left superior frontal gyrus 147 450
-53 25 -6 Left inferior frontal gyrus 147 450
-12 56 34 Left superior frontal gyrus 147 451
-10 -60 32 Left precuneus 147 451
-14 59 31 Left superior frontal gyrus 147 452
-31 -63 -15 Left fusiform gyrus 148 453
-29 -81 7 Left middle occipital gyrus 148 453
-51 -37 10 Left superior temporal gyrus 148 454
-53 -15 3 Left superior temporal gyrus 148 454
-59 -28 27 Left postcentral gyrus 148 455
-54 -48 10 Left temporoparietal junction 148 456
-3 20 33 Left anterior cingulate 149 457
-31 -4 -26 Left parahippocampal gyrus 149 458
-40 -53 -21 Left fusiform gyrus 149 458
-55 -19 -22 Left inferior temporal gyrus 149 458
-37 -10 -29 Left parahippocampal gyrus 149 459
-9 20 34 Left anterior cingulate 149 459
-23 -17 59 Left precentral gyrus 149 459
-23 -6 53 Left superior frontal gyrus 149 459
-9 -55 48 Left precuneus 149 459
-14 39 13 Left anterior cingulate 152 467
-24 -28 53 Left precentral gyrus 152 467
-32 -3 55 Left precentral gyrus 152 467
-28 -52 54 Left superior parietal lobe 152 467
-26 -60 47 Left superior parietal lobe 152 467
-44 -59 -14 Left fusiform gyrus 152 467
-12 -84 -6 Left lingual gyrus 152 467
-6 -78 30 Left cuneus 152 467
-34 -7 8 Left temporal insula 152 468
-16 -29 -5 Left hippocampus 152 468
-34 -26 -9 Left hippocampus 152 468
-53 -56 -1 Left middle temporal gyrus 152 468
-36 -60 7 Left middle temporal gyrus 152 469
-24 20 -25 Left temporal pole 152 469
-59 -53 21 Left superior temporal gyrus/supramarginal gyrus 152 469
-51 16 7 Left inferior frontal gyrus 152 469
-34 33 32 Left middle/superior frontal gyrus 152 469
-18 43 5 Left superior frontal gyrus 152 469
-18 59 23 Left superior frontal gyrus 152 469
-26 8 36 Left middle/superior frontal gyrus 152 469
-18 42 -16 Left orbital gyrus 152 469
-30 -73 18 Left middle occipital gyrus 152 469
-16 -77 -16 Left cerebellum 152 470
-34 -55 -13 Left fusiform gyrus 153 471
-22 2 -19 Left amygdala 153 471
-49 -50 9 Left superior temporal sulcus 154 472
-27 11 51 Left middle frontal gyrus 154 473
-48 -24 15 Left Heschl's gyrus 154 473
-12 -92 4 Left cuneus 154 473
-53 -48 9 Left superior temporal sulcus 154 473
-49 -50 13 Left superior temporal sulcus 154 474
-47 4 22 Left inferior frontal gyrus 154 474
-49 20 15 Left inferior frontal gyrus 154 474
-43 -56 24 Left cerebellum 155 475
-43 -52 -18 Left fusiform gyrus 155 475
-40 -56 -7 Left middle occipital gyrus 155 475
-15 -7 -13 Left Amygdala 155 475
-32 -20 -35 Left inferior temporal gyrus 155 476
-28 -63 31 Left superior occipital gyrus 155 477
-15 -56 9 Left posterior cingulate gyrus 155 478
-50 -46 15 Left superior temporal gyrus 155 478
-25 -63 26 Left precuneus 155 478
-47 -39 31 Left inferior parietal lobule 155 478
-15 -56 9 Left posterior cingulate 155 478
-11 -26 9 Left putamen 155 478
-23 -7 -15 Left amygdala 156 481
-22 -10 -16 Left Amygdala 156 482
-38 48 -10 Left orbitofrontal 157 483
-50 33 -8 Left ventrolateral prefrontal cortex 157 483
-6 58 -1 Left medial prefrontal cortex 157 483
-4 -34 -23 Left pons 157 483
-48 6 -26 Left anterior temporal pole 157 483
-38 48 -11 Left orbitofrontal 157 484
-6 59 -2 Left medial prefrontal cortex 157 484
-6 58 16 Left medial prefrontal cortex 157 484
-52 12 -17 Left anterior temporal pole 157 484
-52 29 0 Left ventrolateral prefrontal cortex 157 484
-42 34 7 Left ventrolateral prefrontal cortex 157 485
-2 -26 -13 Left pons 157 485
-24 54 -14 Left orbitofrontal 157 486
-6 60 6 Left medial prefrontal cortex 157 486
-21 6 -21 Left piriform cortex 158 487
-7 5 -11 Left inferiomedial frontal cortex 158 487
-34 -2 9 Left insula/claustrum 158 487
-56 0 -4 Left superior temporal 159 488
-2 28 28 Left anterior cingulate 159 488
-31 34 8 Left prefrontal 159 488
-54 -6 0 Left superior temporal 159 489
-4 22 28 Left anterior cingulate 159 489
-2 18 36 Left anterior cingulate 159 490
-2 -22 8 Left thalamus 159 490
-6 -68 36 Left precuneus 159 490
-2 20 36 Left anterior cingulate 159 491
-8 -24 12 Left thalamus 159 491
-40 -53 19 Left middle temporal gyrus 161 493
-32 -54 5 Left middle temporal gyrus 161 493
-42 12 5 Left inferior frontal gyrus 161 493
-53 -12 25 Left postcentral gyrus 161 493
-43 -69 3 Left middle occipital/middle temporal gyral border 164 499
-46 -69 8 Left middle occpital/middle temporal gyral border 164 499
57 -22 13 Left Heschl's gyrus 164 499
-4 -50 27 Left posterior cingulate gyrus 165 501
-1 -50 28 Left posterior cingulate gyrus 165 502
-8 -55 11 Left posterior cingulate gyrus 165 503
-4 -42 11 Left posterior cingulate gyrus 165 504
-5 -32 46 Left posterior cingulate gyrus 165 505
-4 -55 29 Left posterior cingulate gyrus 165 506
-2 -55 24 Left posterior cingulate gyrus 165 507
-1 -55 39 Left posterior cingulate gyrus 165 508
-11 -55 29 Left posterior cingulate gyrus 165 509
-12 -68 -16 Left cerebellum 166 510
-26 -24 4 Left thalamus 166 510
52 -32 -12 Left gyrus temporalis medialis 166 510
-12 -61 56 Left superior parietal 167 511
-39 -16 -19 Left medial temporal lobe 167 511
-21 0 0 Left basal ganglia 167 512
-30 -59 -22 Left cerebellum 167 512
-45 41 10 Left middle frontal 168 514
-3 -48 3 Left posterior cingulate 168 514
-14 -45 -21 Left medial cerebellum 168 515
-34 -41 -3 Left parahippocampus 168 515
-38 -48 21 Left superior temporal and inferior parietal 168 515
-14 -45 -21 Left dentate of cerebellum 168 515
-50 18 20 Left inferior frontal 169 516
-34 45 20 Left middle frontal gyrus 169 516
-34 45 20 Left middle frontal gyrus 169 517
-60 -21 20 Left post-central gyrus 169 517
-50 18 20 Left inferior frontal gyrus 169 517
-12 42 40 Left medial frontal gyrus 170 518
-44 20 -16 Left temporal pole 170 518
-44 -58 20 Left superior temporal gyrus 170 518
-40 16 -12 Left temporal pole 170 519
-2 -62 8 Left posterior cingulate cortex 170 519
-42 -64 16 Left superior temporal gyrus 170 519
-12 36 36 Left medial frontal gyrus 170 520
-32 50 20 Left middle frontal gyrus 170 521
-14 -66 36 Left precuneus 170 521
-46 -30 13 Left superior temporal gyrus 171 523
-46 -67 22 Left middle temporal gyrus, angular gyrus 171 523
-28 53 12 Left middle frontal gyrus 171 524
-63 -23 1 Left superior temporal gyrus 171 525
-51 22 10 Left inferior gyrus/middle frontal gyrus 171 525
-34 14 18 Left inferior frontal gyrus 171 525
-38 33 6 Left inferior frontal gyrus, insula 171 525
-53 18 6 Left inferior frontal gyrus 171 526
-38 13 18 Left inferior frontal gyrus 171 526
-50 16 31 Left middle frontal gyrus 172 528
-32 9 54 Left middle frontal gyrus 172 528
-2 24 49 Left superior frontal gyrus 172 528
-50 29 6 Left inferior frontal gyrus 172 529
-48 11 16 Left inferior frontal gyrus 172 529
-50 16 24 Left middle frontal gyrus 172 529
-46 14 38 Left middle frontal gyrus 172 529
-2 23 38 Left medial frontal gyrus 172 529
-2 39 28 Left medial frontal gyrus 172 529
-57 -35 40 Left parietal lobe 173 530
-49 -53 36 Left parietal lobe 173 530
-43 -69 36 Left parietal lobe 173 530
-29 29 40 Left lateral frontal lobe 173 530
-9 43 42 Left frontal lobe 173 530
-17 63 18 Left frontal lobe 173 530
-35 47 -6 Left frontal lobe 173 530
-47 -23 -16 Left temporal lobe 173 530
-21 1 -20 Left amygdala 173 530
-53 -39 42 Left parietal lobe 173 531
-45 -67 36 Left parietal lobe 173 531
-27 27 40 Left lateral frontal lobe 173 531
-11 41 42 Left frontal lobe 173 531
-15 55 26 Left frontal lobe 173 531
-19 57 8 Left frontal lobe 173 531
-33 45 -6 Left frontal lobe 173 531
-49 -19 -18 Left temporal lobe 173 531
-39 41 18 Left frontal lobe 173 532
-35 -13 2 Left insula 173 532
-35 13 -12 Left frontal lobe 173 532
-25 -27 -10 Left temporal lobe 173 532
-21 -9 -22 Left amygdala 173 532
-4 -13 17 Left thalamus 174 533
0 32 -12 Left medial frontal gyrus 174 533
0 32 -12 Left anterior cingulate gyrus 174 533
-50 -46 12 Left posterior middle temporal 175 534
-55 -58 8 Left posterior middle temporal 175 534
-10 1 57 Left medial frontal gyrus 175 534
-50 -46 12 Left posterior middle temporal 175 535
-55 -58 8 Left posterior middle temporal 175 535
-50 -46 12 Left posterior middle temporal 175 536
-55 -58 8 Left posterior middle temporal 175 536
-31 18 -3 Left insula 176 538
-1 18 35 Left anterior cingulate gyrus 176 538
-8 -64 -33 Left cerebellum 176 538
-35 8 23 Left frontal lobe, white matter 176 538
-5 25 35 Left cingulate gyrus 176 539
1 37 6 Left cingulate gyrus 176 539
-47 18 2 Left inferior frontal gyrus 176 539
-46 24 17 Left dorsal prefrontal cortex 176 539
28 41 29 Left dorsal prefrontal cortex 176 539
-28 44 -17 Left fronto-orbital gyrus 176 539
-13 8 -17 Left fronto-orbital gyrus 176 539
-5 -23 6 Left thalamus 176 539
-5 -59 -12 Left cerebellum 176 539
-55 -42 -14 Left inferior/superior temporal gyrus 176 539
-40 18 -38 Left inferior/superior temporal gyrus 176 539
-12 -85 39 Left superior occipital gyrus 176 539
-11 -76 -53 Left superior parietal lobe 176 539
-32 22 2 Left insula 176 539
-13 -4 -3 Left anterior internal capsule 176 539
-34 48 11 Left frontal lobe, white matter 176 539
-26 -25 -3 Left temporal, white matter 176 539
-46 20 -3 Left inferior frontal gyrus 178 550
-49 8 26 Left inferior frontal gyrus 178 550
-46 50 1 Left inferior frontal gyrus 178 550
-35 35 -1 Left inferior frontal gyrus 178 550
-12 0 18 Left caudate 178 550
-23 60 -7 Left superior frontal gyrus 178 550
-25 50 -16 Left orbitofrontal cortex 178 550
-5 50 33 Left superior frontal gyrus 178 550
-10 16 11 Left caudate 178 550
-39 0 47 Left middle frontal gyrus 178 550
-36 35 37 Left middle frontal gyrus 178 551
-47 28 16 Left inferior frontal gyrus 178 552
-23 40 34 Left superior/middle frontal gyrus 178 553
-17 28 43 Left superior frontal gyrus 178 553
-53 16 25 Left inferior frontal gyrus 178 554
4 20 56 Left superior frontal gyrus 178 554
-37 28 -9 Left inferior frontal gyrus 178 554
-42 40 -8 Left inferior frontal gyrus 178 554
-42 35 26 Left middle frontal gyrus 178 555
-56 8 23 Left inferior frontal gyrus 178 556
-48 20 26 Left inferior frontal gyrus 178 556
-50 35 12 Left inferior frontal gyrus 178 556
-17 8 7 Left putamen 178 556
-27 20 43 Left middle frontal gyrus 178 557
-22 35 49 Left middle frontal gyrus 178 557
-44 20 -1 Left inferior frontal gyrus 178 558
-47 8 21 Left inferior frontal gyrus 178 558
-24 50 -16 Left sub. frontal gyrus 178 558
-35 35 -2 Left inferior frontal gyrus 178 558
-22 60 -8 Left sub. frontal gyrus 178 558
-12 16 12 Left caudate 178 558
-36 35 38 Left middle frontal gyrus 178 559
-10 28 54 Left superior frontal gyrus 178 560
-55 20 17 Left inferior frontal gyrus 178 560
-6 16 54 Left superior frontal gyrus 178 560
-13 55 24 Left superior frontal gyrus 178 560
-43 50 0 Left inferior frontal gyrus 178 560
-33 35 -9 Left inferiorfrontal gyrus 178 560
-39 0 55 Left middle frontal gyrus 178 560
-44 8 26 Left inferior frontal gyrus 178 560
-12 16 13 Left caudate 178 560
-32 16 10 Left anterior insula 178 561
-34 45 16 Left dorsolateral prefrontal cortex 179 562
-38 22 38 Left middle frontal gyrus 179 562
-33 14 -1 Left insula 179 562
-3 -5 11 Left caudate/bilateral thalamus 179 562
-41 -3 44 Left precentral gyrus 179 562
-40 -28 43 Left inferior parietal lobule 179 562
-30 -53 39 Left superior parietal lobule/inferior parietal lobule 179 562
-7 -71 -5 Left lingual gyrus 179 562
-30 -40 -25 Left anterior cerebellum 180 563
-31 53 -12 Left orbitofrontal cortex 180 563
-19 5 17 Left caudate nucleus 180 564
-38 29 6 Left prefrontal cortex 181 566
-46 -37 -8 Left temporal 181 566
-36 -1 -17 Left medial temporal cortex 181 567
-26 -32 -12 Left medial temporal cortex 181 567
-38 3 -14 Left anterior temporal cortex 181 570
-36 -52 10 Left temporal cortex 181 570
-4 25 39 Left anterior cingulate cortex 181 571
-48 23 -1 Left frontal cortex 181 571
-34 -26 52 Left pre/postcentral gyri 182 573
-54 2 16 Left precentral gyrus 182 573
-46 18 12 Left inferior frontal gyrus 182 573
-38 -32 24 Left supramarginal gyrus 182 573
-26 -36 40 Left inferior parietal lobule 182 573
-38 -64 4 Left middle occipital gyrus 182 573
4 -58 -24 Left cerebellar vermis 182 573
-30 -22 52 Left pre/postcentral gyri 182 574
-36 0 12 Left precentral gyrus 182 574
-40 20 12 Left inferior frontal gyrus 182 574
-28 -34 24 Left supramarginal gyrus 182 574
-18 -14 36 Left cingulate gyrus 182 574
-14 2 24 Left cingulate gyrus 182 574
-2 -42 0 Left hippocampus 182 574
-4 -24 20 Left pulvinar 182 574
-38 -82 12 Left middle occipital gyrus 182 574
-34 -80 -20 Left inferior piccipital/fusiform gyri 182 574
-8 -72 4 Left lingual gyrus 182 574
-20 12 20 Left caudate 182 574
-16 -64 -24 Left cerebellar hemisphere 182 574
-18 -16 40 Left cingulate gyrus 182 575
-4 24 32 Left cingulate gyrus 182 575
0 -42 0 Left hippocampus 182 575
-36 -82 -16 Left inferior occipital/fusiform fyri 182 575
-10 -66 4 Left lingual gyrus 182 575
-20 -62 -20 Left cerebellar hemisphere 182 575
-38 20 48 Left superior/middle frontal gyri 182 576
-48 -50 44 Left inferior parietal lobule 182 576
-49 0 -2 Left superior temporal gyrus 183 577
-3 -58 48 Left precuneus 183 578
-26 -37 -5 Left posterior hippocampus 184 579
-32 -56 51 Left posterior parietal cortex 184 580
-36 24 16 Left inferior frontal gyrus 185 581
-30 20 12 Left inferior frontal gyrus 185 581
-12 -64 12 Left retrosplenial cortex 185 581
-4 -18 12 Left dorsomedial thalamus 185 581
-36 24 16 Left inferior frontal gyrus 185 582
-36 6 20 Left inferior frontal gyrus 185 582
-28 18 8 Left insula 185 582
-2 -16 12 Left dorsomedial thalamus 185 582
-4 -28 12 Left pulvinar thalamus 185 582
-36 6 20 Left infeiror frontal gyrus 185 583
-12 -62 16 Left retrosplenial cortex 185 584
-50 -64 24 Left middle temporal gyrus/angular gyrus 185 585
-60 -40 24 Left supramarginal gyrus 185 585
-58 -26 20 Left post-central gyrus 185 585
-4 -56 24 Left posterior cingulate gyrus 185 585
-8 -74 24 Left precuneus 185 585
-57 -23 41 Left postcentral 186 586
-54 -15 38 Left pre- and postcentral 186 586
-50 -3 49 Left precentral 186 586

Summary

  x     y     z   Description
-31 -20 13 Mean coordinate in left hemisphere
28 -17 2 Mean coordinate in right hemisphere
31 -20 13 Mean coordinate with ignored left/right
0 -102 -53 Minimum coordinate with ignored left/right
71 65 76 Maximum coordinate with ignored left/right
17 41 24 Standard deviation with ignored left/right
corner cube of WOROI: 100 - Left

Text contexts

At a less conservative threshold, activation was found close to the intraparietal sulci on the left side (Z = 3Ian Law; Claus Svarer; Egill Rostrup; Olaf B. Paulson. Parieto-occipital cortex activation during self-generated eye movements in the dark. Brain 121 ( Pt 11):2189-200, 1998. PMID: 9827777. WOBIB: 1.
In contrast, the categorization tasks were associated with activation of the left inferior temporal gyrus, a structure believed to be involved in semantic processingChristian Gerlach; I. Law; Anders Gade; O. B. Paulson. Categorization and category effects in normal object recognition: a PET study. Neuropsychologia 38(13):1693-703, 2000. PMID: 11099727. WOBIB: 2.
In addition, activation of the left premotor cortex was found during the categorization of artefacts compared with both the categorization of natural objects and object decision to artefactsChristian Gerlach; I. Law; Anders Gade; O. B. Paulson. Categorization and category effects in normal object recognition: a PET study. Neuropsychologia 38(13):1693-703, 2000. PMID: 11099727. WOBIB: 2.
These findings suggest that the structural and semantic stages are dissociable and that the categorization of artefacts, as opposed to the categorization of natural objects, is based, in part, on action knowledge mediated by the left premotor cortexChristian Gerlach; I. Law; Anders Gade; O. B. Paulson. Categorization and category effects in normal object recognition: a PET study. Neuropsychologia 38(13):1693-703, 2000. PMID: 11099727. WOBIB: 2.
We find a clear separation of activation foci in the left dorsolateral prefrontal cortex for the sensorimotor (Brodmann area 46) and verbal fluency (Brodmann area 45) tasksF. Hyder; E. A. Phelps; C. J. Wiggins; K. S. Labar; A. M. Blamire; R. G. Shulman. "Willed action": a functional MRI study of the human prefrontal cortex during a sensorimotor task. Proc Natl Acad Sci U S A 94(13):6989-6994, 1997. PMID: 9192679. WOBIB: 6.
Evidence in favor of this interpretation comes from the additional finding that activation of the anterior part of the left fusiform gyrus and a more anterior part of the right inferior temporal gyrus, areas previously associated with access to stored structural knowledge, was found with recognizable stimuli, but not with unrecognizable stimuliChristian Gerlach; C. T. Aaside; G. W. Humphreys; Anders Gade; O. B. Paulson; I. Law. Brain activity related to integrative processes in visual object recognition: bottom-up integration and the modulatory influence of stored knowledge. Neuropsychologia 40(8):1254-67, 2002. PMID: 11931928. WOBIB: 7.
Previous positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) studies show that during attentive listening, processing of phonetic information is associated with higher activity in the left auditory cortex than in the right auditory cortex while the opposite is true for musical informationM. Tervaniemi; S. V. Medvedev; K. Alho; S. V. Pakhomov; M. S. Roudas; T. L. Van Zuijen; R. Naatanen. Lateralized automatic auditory processing of phonetic versus musical information: a PET study. Human Brain Mapping 10(2):74-79, 2000. PMID: 10864231. WOBIB: 9.
When sound sequences consisted of intermixed frequent and infrequent sounds, automatic phonetic processing was lateralized to the left hemisphere and musical to the right hemisphereM. Tervaniemi; S. V. Medvedev; K. Alho; S. V. Pakhomov; M. S. Roudas; T. L. Van Zuijen; R. Naatanen. Lateralized automatic auditory processing of phonetic versus musical information: a PET study. Human Brain Mapping 10(2):74-79, 2000. PMID: 10864231. WOBIB: 9.
The bilateral extrastriate cortices and a left precentral region were more activated during verbal than during Arabic stimulation, while the right fusiform gyrus and a set of bilateral inferoparietal and frontal regions were more activated during Arabic than during verbal stimulationP. Pinel; S. Dehaene; D. Riviere; D. LeBihan. Modulation of parietal activation by semantic distance in a number comparison task. NeuroImage 14(5):1013-26, 2001. PMID: 11697933. DOI: 10.1006/nimg.2001.0913. WOBIB: 10.
Activation tightly correlated with numerical distance was observed mainly in a group of parietal areas distributed bilaterally along the intraparietal sulci and in the precuneus, as well as in the left middle temporal gyrus and posterior cingulateP. Pinel; S. Dehaene; D. Riviere; D. LeBihan. Modulation of parietal activation by semantic distance in a number comparison task. NeuroImage 14(5):1013-26, 2001. PMID: 11697933. DOI: 10.1006/nimg.2001.0913. WOBIB: 10.
When comparing Generate with both Repeat and Opposite, we observed small areas of activation in the left inferior frontal gyrus and anterior cingulate, similar to the centers of mass reported using PETE. A. Phelps; F. Hyder; A. M. Blamire; R. G. Shulman. FMRI of the prefrontal cortex during overt verbal fluency. NeuroReport 8(2):561-5, 1997. PMID: 9080448. WOBIB: 12.
The subjects were instructed to either concentrate on the stimuli presented in both ears, or only on the left or right ear stimulusK. Hugdahl; Ian Law; S. Kyllingsbaek; K. Bronnick; Anders Gade; Olaf B. Paulson. Effects of attention on dichotic listening: an 15O-PET study. Human Brain Mapping 10(2):87-97, 2000. PMID: 10864233. WOBIB: 14.
Concentrating on either the right or left ear stimulus significantly decreased activity bilaterally in the temporal lobes compared to concentrating on both ear stimuli, at the expense of an increased activation in the right posterior and inferior superior parietal lobeK. Hugdahl; Ian Law; S. Kyllingsbaek; K. Bronnick; Anders Gade; Olaf B. Paulson. Effects of attention on dichotic listening: an 15O-PET study. Human Brain Mapping 10(2):87-97, 2000. PMID: 10864233. WOBIB: 14.
For novel stimuli, skilled mirror-reading was associated with decreased activation in the right superior parietal cortex and posterior occipital regions and increased activation in the left inferior temporal lobeRussell A. Poldrack; John E. Desmond; Gary H. Glover; John D. E. Gabrieli. The neural basis of visual skill learning: an fMRI study of mirror reading. Cerebral Cortex 8(1):1-10, 1998. PMID: 9510380. WOBIB: 15.
On the left side, activation of the middle frontal gyrus, superior frontal gyrus, superior precentral gyrus, thalamus and the caudal part of the anterior cingulate gyrus was seen, while on the right side we found activation in the supramarginal gyrus, mesencephalon and insulaS. Nour; Claus Svarer; J. K. Kristensen; O. B. Paulson; I. Law. Cerebral activation during micturition in normal men. Brain 123 ( Pt 4):781-9, 2000. PMID: 10734009. WOBIB: 17.
09) without correction for multiple comparisons, we found additional activation in the medial pontine tegmentum, mesencephalon, right thalamus, right middle frontal gyrus and left insulaS. Nour; Claus Svarer; J. K. Kristensen; O. B. Paulson; I. Law. Cerebral activation during micturition in normal men. Brain 123 ( Pt 4):781-9, 2000. PMID: 10734009. WOBIB: 17.
In the resting state of normal consciousness (compared with meditation as a baseline), differential activity was found in dorso-lateral and orbital frontal cortex, anterior cingulate gyri, left temporal gyri, left inferior parietal lobule, striatal and thalamic regions, pons and cerebellar vermis and hemispheres, structures thought to support an executive attentional networkH. C. Lou; Troels W. Kjaer; Lars Friberg; G. Wildschiodtz; Søren Holm; Markus Nowak. A 15O-H2O PET study of meditation and the resting state of normal consciousness. Human Brain Mapping 7(2):98-105, 1999. PMID: 9950067. WOBIB: 22.
The CV-syllables resulted in greater neural activation in the left temporal lobe while the musical instruments resulted in greater neural activation in the right temporal lobeK. Hugdahl; K. Bronnick; S. Kyllingsbaek; I. Law; Anders Gade; Olaf B. Paulson. Brain activation during dichotic presentations of consonant-vowel and musical instrument stimuli: a 15O-PET study. Neuropsychologia 37(4):431-40, 1999. PMID: 10215090. WOBIB: 26.
The changes in neural activation were closely mimicked by the performance data which showed a right ear superiority in response accuracy for the CV-syllables, and a left ear superiority for the musical instrumentsK. Hugdahl; K. Bronnick; S. Kyllingsbaek; I. Law; Anders Gade; Olaf B. Paulson. Brain activation during dichotic presentations of consonant-vowel and musical instrument stimuli: a 15O-PET study. Neuropsychologia 37(4):431-40, 1999. PMID: 10215090. WOBIB: 26.
In addition to the temporal lobe activations, there were activation tendencies in the left inferior frontal lobe, right dorsolateral prefrontal cortex, left occipital lobe, and cerebellumK. Hugdahl; K. Bronnick; S. Kyllingsbaek; I. Law; Anders Gade; Olaf B. Paulson. Brain activation during dichotic presentations of consonant-vowel and musical instrument stimuli: a 15O-PET study. Neuropsychologia 37(4):431-40, 1999. PMID: 10215090. WOBIB: 26.
The detected brain structures implicated in mental transformation of size were primarily located in the dorsal pathways, comprising structures in the occipital, parietal, and temporal transition zone (predominantly in the left hemisphere), posterior parietal cortex (bilaterally), area MT/V5 (left), and vermis (bilaterally)A. Larsen; C. Bundesen; S. Kyllingsbaek; O. B. Paulson; I. Law. Brain activation during mental transformation of size. Journal of Cognitive Neuroscience 12(5):763-74, 2000. PMID: 11054919. WOBIB: 30.
Specifically, recall of previously memorized words from temporal cues was associated with activity in the basal forebrain, right middle frontal gyrus, right superior temporal gyrus, and posterior cingulate gyrus, whereas their recall from person cues was associated with activity in the left insula, right middle frontal gyrus, and posterior cingulate gyrusToshikatsu Fujii; Jiro Okuda; Takashi Tsukiura; Hiroya Ohtake; Rina Miura; Reiko Fukatsu; Kyoko Suzuki; Ryuta Kawashima; Masatoshi Itoh; Hiroshi Fukuda; Atsushi Yamadori. The role of the basal forebrain in episodic memory retrieval: a positron emission tomography study. NeuroImage 15(3):501-8, 2002. PMID: 11848693. DOI: 10.1006/nimg.2001.0995. WOBIB: 32.
Activation of the left ventral premotor cortex (PMv) has in previous imaging studies been associated with the processing of visually presented artefactsChristian Gerlach; I. Law; Anders Gade; O. B. Paulson. The role of action knowledge in the comprehension of artefacts--a PET study. NeuroImage 15(1):143-52, 2002. PMID: 11771982. DOI: 10.1006/nimg.2002.0969. WOBIB: 34.
The purpose of the present study was to test whether activation of the left PMv is common for all tasks involving the comprehension of artefacts or whether it is task specificChristian Gerlach; I. Law; Anders Gade; O. B. Paulson. The role of action knowledge in the comprehension of artefacts--a PET study. NeuroImage 15(1):143-52, 2002. PMID: 11771982. DOI: 10.1006/nimg.2002.0969. WOBIB: 34.
The left PMv (BA 6/44) was more activated by the categorization task for artefacts than by the categorization task for natural objects and the naming task for artefactsChristian Gerlach; I. Law; Anders Gade; O. B. Paulson. The role of action knowledge in the comprehension of artefacts--a PET study. NeuroImage 15(1):143-52, 2002. PMID: 11771982. DOI: 10.1006/nimg.2002.0969. WOBIB: 34.
However, the left PMv was not associated with the contrast between the naming task for artefacts and the naming task for natural objects nor with the processing of artefacts in generalChristian Gerlach; I. Law; Anders Gade; O. B. Paulson. The role of action knowledge in the comprehension of artefacts--a PET study. NeuroImage 15(1):143-52, 2002. PMID: 11771982. DOI: 10.1006/nimg.2002.0969. WOBIB: 34.
These two right-side brain structures function in the context of associated activity in right inferior parietal and bilateral medial parietal regions that support egocentric movement through the virtual town, and activity in other left-side regions (hippocampus, frontal cortex) probably involved in nonspatial aspects of navigationE. A. Maguire; N. Burgess; J. G. Donnett; Richard S. J. Frackowiak; C. D. Frith; J. O'Keefe. Knowing where and getting there: a human navigation network. Science 280(5365):921-4, 1998. PMID: 9572740. WOBIB: 38.
The strongest activation peak with both unpleasant and pleasant words was observed in the left subgenual cingulate cortexRichard J. Maddock; Amy S. Garrett; Michael H. Buonocore. Posterior cingulate cortex activation by emotional words: fMRI evidence from a valence decision task. Human Brain Mapping 18(1):30-41, 2003. PMID: 12454910. DOI: 10.1002/hbm.10075. WOBIB: 39.
Anteromedial orbital and left inferior and middle frontal cortices were also activated by both pleasant and unpleasant wordsRichard J. Maddock; Amy S. Garrett; Michael H. Buonocore. Posterior cingulate cortex activation by emotional words: fMRI evidence from a valence decision task. Human Brain Mapping 18(1):30-41, 2003. PMID: 12454910. DOI: 10.1002/hbm.10075. WOBIB: 39.
Right amygdala and auditory cortex were activated only by unpleasant words, while left frontal pole was activated only by pleasant wordsRichard J. Maddock; Amy S. Garrett; Michael H. Buonocore. Posterior cingulate cortex activation by emotional words: fMRI evidence from a valence decision task. Human Brain Mapping 18(1):30-41, 2003. PMID: 12454910. DOI: 10.1002/hbm.10075. WOBIB: 39.
This reaction time effect was accompanied by increases in activity in four regions: the right ventrolateral prefrontal cortex, the supplementary motor area, the left superior parietal lobe, and the left anterior parietal cortexE. Hazeltine; Russell Poldrack; John D. E. Gabrieli. Neural activation during response competition. Journal of Cognitive Neuroscience 12(Supplement 2):118-29, 2000. PMID: 11506652. DOI: 10.1162/089892900563984. FMRIDCID: 2-2000-11173. WOBIB: 40.
Functional magnetic resonance imaging experiments revealed activations in the left temporal polar region during the retrieval of familiar and newly learned people's names, and in the right superior temporal and bilateral prefrontal cortices during the retrieval of newly learned information from face cuesTakashi Tsukiura; Toshikatsu Fujii; Reiko Fukatsu; Taisuke Otsuki; Jiro Okuda; Atsushi Umetsu; Kyoko Suzuki; Michio Tabuchi; Isao Yanagawa; Tatsuo Nagasaka; Ryuta Kawashima; Hiroshi Fukuda; Shoki Takahashi; Atsushi Yamadori. Neural basis of the retrieval of people's names: evidence from brain-damaged patients and fMRI. Journal of Cognitive Neuroscience 14(6):922-37, 2002. PMID: 12191459. DOI: 10.1162/089892902760191144. FMRIDCID: 2-2002-112QC. WOBIB: 41.
These data provide new evidence that the left anterior temporal region is crucial for the retrieval of people's names irrespective of their familiarity and that the right superior temporal and bilateral prefrontal areas are crucial for the process of associating newly learned people's faces and namesTakashi Tsukiura; Toshikatsu Fujii; Reiko Fukatsu; Taisuke Otsuki; Jiro Okuda; Atsushi Umetsu; Kyoko Suzuki; Michio Tabuchi; Isao Yanagawa; Tatsuo Nagasaka; Ryuta Kawashima; Hiroshi Fukuda; Shoki Takahashi; Atsushi Yamadori. Neural basis of the retrieval of people's names: evidence from brain-damaged patients and fMRI. Journal of Cognitive Neuroscience 14(6):922-37, 2002. PMID: 12191459. DOI: 10.1162/089892902760191144. FMRIDCID: 2-2002-112QC. WOBIB: 41.
Two areas with these properties were found in the left inferior frontal cortex (opercular region) and the rostral-most region of the right superior parietal lobuleM. Iacoboni; R. P. Woods; M. Brass; H. Bekkering; J. C. Mazziotta; G. Rizzolatti. Cortical mechanisms of human imitation. Science 286(5449):2526-8, 1999. PMID: 10617472. WOBIB: 44.
Deduction activated areas near right brain homologues of left language areas in middle temporal lobe, inferior frontal cortex and basal ganglia, as well as right amygdala, but not spatial-visual areasL. M. Parsons; D. Osherson. New Evidence for Distinct Right and Left Brain Systems for Deductive versus Probabilistic Reasoning. Cerebral Cortex 11(10):954-65, 2001. PMID: 11549618. WOBIB: 47.
Right hemisphere activations in the deduction task cannot be explained by spill-over from overtaxed, left language areasL. M. Parsons; D. Osherson. New Evidence for Distinct Right and Left Brain Systems for Deductive versus Probabilistic Reasoning. Cerebral Cortex 11(10):954-65, 2001. PMID: 11549618. WOBIB: 47.
Probabilistic reasoning was mostly associated with left hemispheric areas in inferior frontal, posterior cingulate, parahippocampal, medial temporal, and superior and medial prefrontal corticesL. M. Parsons; D. Osherson. New Evidence for Distinct Right and Left Brain Systems for Deductive versus Probabilistic Reasoning. Cerebral Cortex 11(10):954-65, 2001. PMID: 11549618. WOBIB: 47.
Normal subjects were instructed to manipulate a small graspable object with a pair of tongs or with the fingers of their right or left handK. Inoue; R. Kawashima; Motoaki Sugiura; A. Ogawa; T. Schormann; Karl Zilles; Hiroshi Fukuda. Activation in the ipsilateral posterior parietal cortex during tool use: a PET study. NeuroImage 14(6):1469-75, 2001. PMID: 11707103. DOI: 10.1006/nimg.2001.0942. WOBIB: 48.
During manipulation using the left hand with the tool, compared with using the fingers, an area in the middle part of the left IPS was activatedK. Inoue; R. Kawashima; Motoaki Sugiura; A. Ogawa; T. Schormann; Karl Zilles; Hiroshi Fukuda. Activation in the ipsilateral posterior parietal cortex during tool use: a PET study. NeuroImage 14(6):1469-75, 2001. PMID: 11707103. DOI: 10.1006/nimg.2001.0942. WOBIB: 48.
We found that differences in the meaning of the action, irrespective of the strategy used during observation, lead to different patterns of brain activity and clear left/right asymmetriesJean Decety; J. Grezes; N. Costes; Daniela Perani; Marc Jeannerod; E. Procyk; F. Grassi; F. Fazio. Brain activity during observation of actions. Influence of action content and subject's strategy. Brain 120 ( Pt 10):1763-77, 1997. PMID: 9365369. WOBIB: 49.
Meaningful actions strongly engaged the left hemisphere in frontal and temporal regions while meaningless actions involved mainly the right occipitoparietal pathwayJean Decety; J. Grezes; N. Costes; Daniela Perani; Marc Jeannerod; E. Procyk; F. Grassi; F. Fazio. Brain activity during observation of actions. Influence of action content and subject's strategy. Brain 120 ( Pt 10):1763-77, 1997. PMID: 9365369. WOBIB: 49.
A network of left-hemisphere polymodal cortical regions showed higher signal values during the resting state than during the perceptual task but equal values during the resting and semantic conditionsJ. R. Binder; J. A. Frost; T. A. Hammeke; P. S. Bellgowan; S. M. Rao; R. W. Cox. Conceptual processing during the conscious resting state. A functional MRI study. Journal of Cognitive Neuroscience 11(1):80-95, 1999. PMID: 9950716. WOBIB: 50.
Maintenance of orientations involved a distributed fronto-parietal network, that is, left and right lateral superior frontal sulcus (SFSl), bilateral ventrolateral prefrontal cortex (VLPFC), bilateral precuneus, and right superior parietal lobe (SPL)L. Cornette; P. Dupont; E. Salmon; G. A. Orban. The neural substrate of orientation working memory. Journal of Cognitive Neuroscience 13(6):813-28, 2001. PMID: 11564325. DOI: 10.1162/08989290152541476. WOBIB: 51.
Six male subjects underwent whole brain fMRI during phasic delivery of noxious hot (46 degrees C) and noxious cold (5 degrees C) stimulation to the dorsum of the left handI. Tracey; L. Becerra; I. Chang; H. Breiter; L. Jenkins; D. Borsook; R. G. Gonzalez. Noxious hot and cold stimulation produce common patterns of brain activation in humans: a functional magnetic resonance imaging study. Neuroscience Letters 288(2):159-62, 2000. PMID: 10876085. WOBIB: 57.
Unlike the monkey brain, spatial awareness in humans is a function largely confined to the right superior temporal cortex, a location topographically reminiscent of that for language on the leftHans-Otto Karnath; S. Ferber; M. Himmelbach. Spatial awareness is a function of the temporal not the posterior parietal lobe. Nature 411(6840):950-3, 2001. PMID: 11418859. DOI: 10.1038/35082075. WOBIB: 59.
One may speculate that this lateralization of spatial awareness parallels the emergence of an elaborate representation for language on the left sideHans-Otto Karnath; S. Ferber; M. Himmelbach. Spatial awareness is a function of the temporal not the posterior parietal lobe. Nature 411(6840):950-3, 2001. PMID: 11418859. DOI: 10.1038/35082075. WOBIB: 59.
Experiments were performed on the right and left hand independently and with two attentional contexts: subjects either attended to pain or attended to a visual global motion discrimination task (to distract them from pain)Jonathan C. W. Brooks; Turo J. Nurmikko; William E. Bimson; Krish D. Singh; Neil Roberts. fMRI of thermal pain: effects of stimulus laterality and attention. NeuroImage 15(2):293-301, 2002. PMID: 11798266. DOI: 10.1006/nimg.2001.0974. WOBIB: 60.
The patient is implanted with a chronic stimulation electrode in the left ventroposterior medial thalamic nucleus with which he can completely suppress his chronic painR. C. Kupers; J. M. Gybels; Albert Gjedde. Positron emission tomography study of a chronic pain patient successfully treated with somatosensory thalamic stimulation. Pain 87(3):295-302, 2000. PMID: 10963909. WOBIB: 62.
In addition, the right temporomesial, right dorsal prefrontal, right posterior cingulate areas, and the left cerebellum were activatedG. R. Fink; H. J. Markowitsch; M. Reinkemeier; T. Bruckbauer; J. Kessler; W. D. Heiss. Cerebral representation of one's own past: neural networks involved in autobiographical memory. Journal of Neuroscience 16(13):4275-82, 1996. PMID: 8753888. WOBIB: 68.
Conjunction analysis revealed a network of brain areas jointly activated during conscious REST as compared to the nine cognitive tasks, including the bilateral angular gyrus, the left anterior precuneus and posterior cingulate cortex, the left medial frontal and anterior cingulate cortex, the left superior and medial frontal sulcus, and the left inferior frontal cortexB. Mazoyer; L. Zago; E. Mellet; S. Bricogne; O. Etard; O. Houde; F. Crivello; M. Joliot; L. Petit; N. Tzourio-Mazoyer. Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Research Bulletin 54(3):287-298, 2001. PMID: 11287133. WOBIB: 74.
These results suggest that brain activity during conscious REST is sustained by a large scale network of heteromodal associative parietal and frontal cortical areas, that can be further hierarchically organized in an episodic working memory parieto-frontal network, driven in part by emotions, working under the supervision of an executive left prefrontal networkB. Mazoyer; L. Zago; E. Mellet; S. Bricogne; O. Etard; O. Houde; F. Crivello; M. Joliot; L. Petit; N. Tzourio-Mazoyer. Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Research Bulletin 54(3):287-298, 2001. PMID: 11287133. WOBIB: 74.
Within this system, however, enhanced activity was observed for retrieval of personally relevant, time-specific memories in left hippocampus, medial prefrontal cortex, and left temporal poleE. A. Maguire; C. J. Mummery. Differential modulation of a common memory retrieval network revealed by positron emission tomography. Hippocampus 9(1):54-61, 1999. PMID: 10088900. WOBIB: 78.
Finally, left parahippocampal gyrus, left anterolateral temporal cortex, and posterior cingulate cortex were involved in memory retrieval irrespective of person or timeE. A. Maguire; C. J. Mummery. Differential modulation of a common memory retrieval network revealed by positron emission tomography. Hippocampus 9(1):54-61, 1999. PMID: 10088900. WOBIB: 78.
Several regions, including the precuneus, posterior cingulate, and left lateral parietal cortex, showed greater responses to correct old than correct new judgementsR. N. Henson; Michael D. Rugg; T. Shallice; R. J. Dolan. Confidence in recognition memory for words: dissociating right prefrontal roles in episodic retrieval. Journal of Cognitive Neuroscience 12(6):913-23, 2000. PMID: 11177413. WOBIB: 80.
The anterior left and right prefrontal regions also showed an old-new difference, but for these regions the difference emerged relatively later in timeR. N. Henson; Michael D. Rugg; T. Shallice; R. J. Dolan. Confidence in recognition memory for words: dissociating right prefrontal roles in episodic retrieval. Journal of Cognitive Neuroscience 12(6):913-23, 2000. PMID: 11177413. WOBIB: 80.
We observed an interaction between the predictability of stimuli and self-generated actions in several areas, including the medial posterior cingulate cortex, left insula, dorsomedial thalamus, superior colliculus and right inferior temporal cortexS. J. Blakemore; G. Rees; C. D. Frith. How do we predict the consequences of our actions? A functional imaging study. Neuropsychologia 36(6):521-9, 1998. PMID: 9705062. WOBIB: 82.
As in the companion study of free recall of complex narratives, we observed that practice tended to decrease the size of activations in regions involved in the memory component of the task; we also observed that the novel recall task produced greater activation in left frontal regions, probably due to active encodingNancy C. Andreasen; D. S. O'Leary; T. Cizadlo; Stephan Arndt; K. Rezai; G. L. Watkins; L. L. Ponto; R. D. Hichwa. II. PET studies of memory: novel versus practiced free recall of word lists. NeuroImage 2(4):296-305, 1995. PMID: 9343614. WOBIB: 85.
The caudal part of the left posterior cingulate cortex was the most strongly activated region and was significantly activated in all eight subjects studiedR. J. Maddock; A. S. Garrett; Michael H. Buonocore. Remembering familiar people: the posterior cingulate cortex and autobiographical memory retrieval. Neuroscience 104(3):667-76, 2001. PMID: 11440800. WOBIB: 90.
Most subjects also showed significant activation of the left anterior orbitomedial, anterior middle frontal, precuneus, cuneus, and posterior inferior parietal cortices, and the right posterior cingulate and motor corticesR. J. Maddock; A. S. Garrett; Michael H. Buonocore. Remembering familiar people: the posterior cingulate cortex and autobiographical memory retrieval. Neuroscience 104(3):667-76, 2001. PMID: 11440800. WOBIB: 90.
Using maximal glucose metabolism reductions in the left frontal cortex, we estimated that as few as 36 patients per group would be needed to detect a 33% treatment response with one-tailed significance of pGene E. Alexander; Kewei Chen; Pietro Pietrini; Stanley I. Rapoport; Eric M. Reiman. Longitudinal PET Evaluation of Cerebral Metabolic Decline in Dementia: A Potential Outcome Measure in Alzheimer's Disease Treatment Studies. American Journal of Psychiatry 159(5):738-45, 2002. PMID: 11986126. WOBIB: 91.
Unpleasant was distinguished from neutral or pleasant emotion by activation of the bilateral occipito-temporal cortex and cerebellum, and left parahippocampal gyrus, hippocampus and amygdala (P < 0Richard D. Lane; Eric M. Reiman; M. M. Bradley; P. J. Lang; Geoffrey L. Ahern; Richard J. Davidson; Gary E. Schwartz. Neuroanatomical correlates of pleasant and unpleasant emotion. Neuropsychologia 35(11):1437-44, 1997. PMID: 9352521. BrainMap: 276. WOBIB: 93.
Pleasant was also distinguished from neutral but not unpleasant emotion by activation of the head of the left caudate nucleus (P < 0Richard D. Lane; Eric M. Reiman; M. M. Bradley; P. J. Lang; Geoffrey L. Ahern; Richard J. Davidson; Gary E. Schwartz. Neuroanatomical correlates of pleasant and unpleasant emotion. Neuropsychologia 35(11):1437-44, 1997. PMID: 9352521. BrainMap: 276. WOBIB: 93.
H2 15 O positron emission tomography was used to measure rCBF, and the constant voltage technique was used to measure NSF from the left handM. Fredrikson; T. Furmark; M. T. Olsson; Håkan Fischer; J. Andersson; B. Langstrom. Functional neuroanatomical correlates of electrodermal activity: a positron emission tomographic study. Psychophysiology 35(2):179-85, 1998. PMID: 9529944. WOBIB: 94.
Electrodermal activity was positively related to rCBF in the left primary motor cortex (MI, Brodmann's Area 4) and bilaterally in the anterior (Areas 24 and 32) and posterior cingulate cortex (Area 23)M. Fredrikson; T. Furmark; M. T. Olsson; Håkan Fischer; J. Andersson; B. Langstrom. Functional neuroanatomical correlates of electrodermal activity: a positron emission tomographic study. Psychophysiology 35(2):179-85, 1998. PMID: 9529944. WOBIB: 94.
To learn about the sequence of brain activation patterns during heat pain, we acquired positron emission tomographic (PET) brain scans at different times during repetitive heat stimulation (40 or 50 degrees C; 5-s contact) of each subject's left forearmK. L. Casey; T. J. Morrow; J. Lorenz; S. Minoshima. Temporal and spatial dynamics of human forebrain activity during heat pain: analysis by positron emission tomography. Journal of Neurophysiology 85(2):951-9, 2001. PMID: 11160525. WOBIB: 95.
The results show that regional cerebral blood flow is positively correlated with REM sleep in pontine tegmentum, left thalamus, both amygdaloid complexes, anterior cingulate cortex and right parietal operculumP. Maquet; J. Peters; J. Aerts; G. Delfiore; C. Degueldre; A. Luxen; G. Franck. Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature 383(6596):163-6, 1996. PMID: 8774879. WOBIB: 96.
Disgusted facial expressions activated the right putamen and the left insula cortex, whereas enhanced activity in the posterior part of the right gyrus cinguli and the medial temporal gyrus of the left hemisphere was observed during processing of angry facesR. Sprengelmeyer; M. Rausch; U. T. Eysel; H. Przuntek. Neural structures associated with recognition of facial expressions of basic emotions. Proc R Soc Lond B Biol Sci 265(1409):1927-31, 1998. PMID: 9821359. WOBIB: 97.
For all three emotions investigated, we also found activation of the inferior part of the left frontal cortex (Brodmann area 47)R. Sprengelmeyer; M. Rausch; U. T. Eysel; H. Przuntek. Neural structures associated with recognition of facial expressions of basic emotions. Proc R Soc Lond B Biol Sci 265(1409):1927-31, 1998. PMID: 9821359. WOBIB: 97.
We detected signal increase in the right middle temporal gyrus and left prefrontal cortex during presentation of familiar faces, and in several brain regions, including bilateral posterior cingulate gyri, bilateral insulae and right middle occipital cortex during presentation of unfamiliar facesMary L. Phillips; E. T. Bullmore; R. Howard; P. W. Woodruff; I. C. Wright; Steven C. R. Williams; A. Simmons; C. Andrew; M. Brammer; Anthony S. David. Investigation of facial recognition memory and happy and sad facial expression perception: an fMRI study. Psychiatry Research 83(3):127-38, 1998. PMID: 9849722. WOBIB: 98.
During presentation of happy facial expressions, we detected a signal increase predominantly in the left anterior cingulate gyrus, bilateral posterior cingulate gyri, medial frontal cortex and right supramarginal gyrus, brain regions previously implicated in visuospatial and emotion processing tasksMary L. Phillips; E. T. Bullmore; R. Howard; P. W. Woodruff; I. C. Wright; Steven C. R. Williams; A. Simmons; C. Andrew; M. Brammer; Anthony S. David. Investigation of facial recognition memory and happy and sad facial expression perception: an fMRI study. Psychiatry Research 83(3):127-38, 1998. PMID: 9849722. WOBIB: 98.
Cortically, rCBF increased in the left anterior and posterior cingulate gyrus, the left primary somatosensory cortex, the left premotor cortex and bilaterally in parietal areasM. Fredrikson; G. Wik; Håkan Fischer; J. Andersson. Affective and attentive neural networks in humans: a PET study of Pavlovian conditioning. NeuroReport 7(1):97-101, 1995. PMID: 8742426. WOBIB: 99.
Subjects were scanned during infusion of H2[15O]: four randomized scans during innocuous heat stimulation to the back of the left hand and four scans during noxious but bearable heat to the same placeBrent A. Vogt; Stuart Derbyshire; Anthony K. Jones. Pain processing in four regions of human cingulate cortex localized with co-registered PET and MR imaging. European Journal of Neuroscience 8(7):1461-73, 1996. PMID: 8758953. WOBIB: 100.
Six cases had at least one significant elevation of rCBF in the right hemisphere that primarily involved area 24b'; five of these cases also had an elevation in area 32', while the seventh case had elevated rCBF in these areas in the left hemisphereBrent A. Vogt; Stuart Derbyshire; Anthony K. Jones. Pain processing in four regions of human cingulate cortex localized with co-registered PET and MR imaging. European Journal of Neuroscience 8(7):1461-73, 1996. PMID: 8758953. WOBIB: 100.
During each PET scan in nine healthy volunteers a tonic heat source was placed against the subject's left forearm, delivering a preset temperature of either 40 degrees C (nonpainful) or 47-48 degrees C (painful)L. J. Adler; F. E. Gyulai; D. J. Diehl; M. A. Mintun; P. M. Winter; L. L. Firestone. Regional brain activity changes associated with fentanyl analgesia elucidated by positron emission tomography. Anesthesia & Analgesia 84(1):120-126, 1997. PMID: 8989012. WOBIB: 101.
Accordingly, positron emission tomography (PET) with intravenous injection of H2(15)O was used to detect increases in regional cerebral blood flow (rCBF) in normal humans as they discriminated differences in the intensity of noxious and innocuous thermal stimulation applied to the nondominant (left) armK. L. Casey; S. Minoshima; T. J. Morrow; R. A. Koeppe. Comparison of human cerebral activation pattern during cutaneous warmth, heat pain, and deep cold pain. Journal of Neurophysiology 76(1):571-81, 1996. PMID: 8836245. WOBIB: 102.
For discrimination between tonic innocuous cold and tonic cold pain, the left hand was immersed to the wrist, throughout each of six scans, in water kept at an average temperature of either 20K. L. Casey; S. Minoshima; T. J. Morrow; R. A. Koeppe. Comparison of human cerebral activation pattern during cutaneous warmth, heat pain, and deep cold pain. Journal of Neurophysiology 76(1):571-81, 1996. PMID: 8836245. WOBIB: 102.
Besides elevating subjective and physiological indices of anxiety, traumatic stimulation increased rCBF bilaterally in the primary and secondary visual cortex, the posterior gyrus cinguli and in the left orbitofrontal cortex compared with that during the control stimulationHåkan Fischer; G. Wik; M. Fredrikson. Functional neuroanatomy of robbery re-experience: affective memories studied with PET. NeuroReport 7(13):2081-6, 1996. PMID: 8930963. WOBIB: 103.
Decreased rCBF was found in Broca's area, the left angular gyrus, the left operculum and the secondary somatosensory cortexHåkan Fischer; G. Wik; M. Fredrikson. Functional neuroanatomy of robbery re-experience: affective memories studied with PET. NeuroReport 7(13):2081-6, 1996. PMID: 8930963. WOBIB: 103.
The group showed significant positive correlations between symptom intensity and blood flow in the right inferior frontal gyrus, caudate nucleus, putamen, globus pallidus and thalamus, and the left hippocampus and posterior cingulate gyrusPhilip K. McGuire; C. J. Bench; C. D. Frith; I. M. Marks; Richard S. J. Frackowiak; R. J. Dolan. Functional anatomy of obsessive-compulsive phenomena. British Journal of Psychiatry 164(4):459-468, 1994. PMID: 8038933. WOBIB: 104.
Regardless of how the information had been encoded, recognition was associated with increased activation in regions in right prefrontal cortex, left anterior cingulate, and cerebellumL. Nyberg; Endel Tulving; R. Habib; L. G. Nilsson; S. Kapur; S. Houle; Roberto Cabeza; A. R. McIntosh. Functional brain maps of retrieval mode and recovery of episodic information. NeuroReport 7(1):249-52, 1995. PMID: 8742463. WOBIB: 105.
Recognition following meaning encoding was specifically associated with increased activation in left temporal cortex, and recognition following voice encoding involved regions in right orbital frontal and parahippocampal cortexL. Nyberg; Endel Tulving; R. Habib; L. G. Nilsson; S. Kapur; S. Houle; Roberto Cabeza; A. R. McIntosh. Functional brain maps of retrieval mode and recovery of episodic information. NeuroReport 7(1):249-52, 1995. PMID: 8742463. WOBIB: 105.
Areas preferentially active during encoding (relative to retrieval) included left superior frontal cortex, medial frontal cortex, left superior temporal cortex, posterior cingulate, left parahippocampal gyrus, and left inferior frontal gyrusK. B. McDermott; J. G. Ojemann; Steven E. Petersen; J. M. Ollinger; A. Z. Snyder; E. Akbudak; T. E. Conturo; Marcus E. Raichle. Direct comparison of episodic encoding and retrieval of words: an event-related fMRI study. Memory 7(5-6):661-78, 1999. PMID: 10659091. WOBIB: 106.
Major regional foci of activation were identified (by sinusoidal regression modeling and spatiotemporal randomization tests) in left extrastriate cortex, angular gyrus, supramarginal gyrus, superior and middle temporal gyri, lateral premotor cortex, and Broca's areaE. T. Bullmore; S. Rabe-Hesketh; R. G. Morris; Steven C. R. Williams; L. Gregory; J. A. Gray; M. J. Brammer. Functional magnetic resonance image analysis of a large-scale neurocognitive network. NeuroImage 4(1):16-33, 1996. PMID: 9345494. WOBIB: 113.
Painful heat (47-48 degrees C), nonpainful vibratory (110 Hz), and neutral control (34 degrees C) stimuli were applied to the left forearm of right-handed male subjectsR. C. Coghill; J. D. Talbot; A. C. Evans; Ernst Meyer; Albert Gjedde; M. C. Bushnell; G. H. Duncan. Distributed processing of pain and vibration by the human brain. Journal of Neuroscience 14(7):4095-108, 1994. PMID: 8027764. WOBIB: 117.
Accordingly, positron emission tomography (PET) with intravenous injection of H2(15)O was used to detect increases in regional cerebral blood flow (rCBF) in normal right-handed male and female subjects as they discriminated differences in the intensity of innocuous and noxious heat stimuli applied to the left forearmP. E. Paulson; S. Minoshima; T. J. Morrow; K. L. Casey. Gender differences in pain perception and patterns of cerebral activation during noxious heat stimulation in humans. Pain 76(1-2):223-9, 1998. PMID: 9696477. WOBIB: 118.
The results from the group analysis documented that permanent amnesia is associated with hypometabolism in the thalamus, posterior cingulate cortex, and mesial prefrontal cortex (near the anterior cingulate gyrus), bilaterally, as well as in the left supramarginal and middle temporal gyriA. M. Aupee; B. Desgranges; F. Eustache; C. Lalevee; V. de la Sayette; F. Viader; J. C. Baron. Voxel-based mapping of brain hypometabolism in permanent amnesia with PET. NeuroImage 13(6 Pt 1):1164-73, 2001. PMID: 11352622. DOI: 10.1006/nimg.2001.0762. WOBIB: 119.
Thus, permanent amnesia is subtended by dysfunction in structures belonging to Papez/limbic circuits as well as in left-hemisphere areas typically concerned with verbal functions, probably through a mechanism of thalamo-cortical disconnection and possibly involved in retrograde amnesiaA. M. Aupee; B. Desgranges; F. Eustache; C. Lalevee; V. de la Sayette; F. Viader; J. C. Baron. Voxel-based mapping of brain hypometabolism in permanent amnesia with PET. NeuroImage 13(6 Pt 1):1164-73, 2001. PMID: 11352622. DOI: 10.1006/nimg.2001.0762. WOBIB: 119.
Evaluative judgment produced significant activation in the anterior frontomedian cortex (BA 10/9), the inferior precuneus (BA 23/31), and the left inferior prefrontal cortex (BA 45/47)Stefan Zysset; Oswald Huber; Evelyn Ferstl; D. Y. von Cramon. The anterior frontomedian cortex and evaluative judgment: an fMRI study. NeuroImage 15(4):983-91, 2002. PMID: 11906238. DOI: 10.1006/nimg.2001.1008. WOBIB: 121.
During sleep there was a relative flow increase in the occipital lobes and a relative flow decrease in the bilateral cerebellum, the bilateral posterior parietal cortex, the right premotor cortex and the left thalamusTroels W. Kjaer; Ian Law; Gordon Wiltschiotz; Olaf B. Paulson; Peter L. Madsen. Regional cerebral blood flow during light sleep--a H(2)(15)O-PET study. Journal of Sleep Research 11(3):201-207, 2002. PMID: 12220315. WOBIB: 124.
RESULTS: A decrease in measures of benzodiazepine receptor binding (DV) was found in left hippocampus and precuneus in panic disorder patients relative to controlsJ. D. Bremner; R. B. Innis; T. White; M. Fujita; D. Silbersweig; A. W. Goddard; L. Staib; E. Stern; A. Cappiello; S. Woods; R. Baldwin; D. S. Charney. SPECT [I-123]iomazenil measurement of the benzodiazepine receptor in panic disorder. Biological Psychiatry 47(2):96-106, 2000. PMID: 10664825. WOBIB: 126.
CONCLUSIONS: Findings of a decrease in left hippocampal and precuneus benzodiazepine receptor binding may be related to alterations in benzodiazepine receptor binding, or other factors including changes in GABAergic transmission or possible endogenous benzodiazepine compoundsJ. D. Bremner; R. B. Innis; T. White; M. Fujita; D. Silbersweig; A. W. Goddard; L. Staib; E. Stern; A. Cappiello; S. Woods; R. Baldwin; D. S. Charney. SPECT [I-123]iomazenil measurement of the benzodiazepine receptor in panic disorder. Biological Psychiatry 47(2):96-106, 2000. PMID: 10664825. WOBIB: 126.
RESULTS: The random episodic condition produced activations in widely distributed association cortex (right and left frontal, parietal, angular/supramarginal, and posterior inferior temporal regions)Nancy C. Andreasen; Daniel S. O'Leary; Ted Cizadlo; Stephan Arndt; Karim Rezai; G. Leonard Watkins; Laura L. Ponto; Richard D. Hichwa. Remembering the past: two facets of episodic memory explored with positron emission tomography. American Journal of Psychiatry 152(11):1576-1585, 1995. PMID: 7485619. FMRIDCID: . BrainMap: 219. WOBIB: 134.
The major difference between semantic and episodic memory was activation of Broca's area and the left frontal operculum by semantic memoryNancy C. Andreasen; Daniel S. O'Leary; Ted Cizadlo; Stephan Arndt; Karim Rezai; G. Leonard Watkins; Laura L. Ponto; Richard D. Hichwa. Remembering the past: two facets of episodic memory explored with positron emission tomography. American Journal of Psychiatry 152(11):1576-1585, 1995. PMID: 7485619. FMRIDCID: . BrainMap: 219. WOBIB: 134.
The citalopram-induced change in cerebral metabolism was positively correlated with age in the right precuneus, right paracentral lobule, and left middle temporal gyrus and negatively correlated with age in the left anterior cingulate gyrus, right inferior and middle frontal gyri, right insula, and right inferior parietal lobuleSara Goldberg; Gwenn S. Smith; Anna Barnes; Yilong Ma; Elisse Kramer; Kimberly Robeson; Margaret Kirshner; Bruce G. Pollock; David Eidelberg. Serotonin modulation of cerebral glucose metabolism in normal aging. Neurobiology of Aging 25(2):167-174, 2004. PMID: 14749134. FMRIDCID: . WOBIB: 138.
By adapting functional magnetic resonance imaging scanning parameters to maximize sensitivity to medial temporal lobe activity, we demonstrate that left perirhinal and hippocampal responses during word list encoding are greater for subsequently recalled than forgotten wordsB. A. Strange; L. J. Otten; Oliver Josephs; Michael D. Rugg; Raymond J. Dolan. Dissociable human perirhinal, hippocampal, and parahippocampal roles during verbal encoding. Journal of Neuroscience 22(2):523-528, 2002. PMID: 11784798. FMRIDCID: . WOBIB: 142.
A parametric haemodynamic response model (or regression analysis) confirmed a task-difficulty-dependent increase of BOLD and rCBF for the cerebellum and the left dorsolateral prefrontal cortexUlrich Schall; Patrick Johnston; Jim Lagopoulos; Markus Juptner; Walter Jentzen; Renate Thienel; Alexandra Dittmann-Balcar; Stefan Bender; Philip B. Ward. Functional brain maps of Tower of London performance: a positron emission tomography and functional magnetic resonance imaging study. NeuroImage 20(2):1154-61, 2003. PMID: 14568484. DOI: 10.1016/S1053-8119(03)00338-0. FMRIDCID: . WOBIB: 144.
In line with previous studies, a task-difficulty-dependent increase of left-hemispheric rCBF was also detected for the premotor cortex, cingulate, precuneus, and globus pallidusUlrich Schall; Patrick Johnston; Jim Lagopoulos; Markus Juptner; Walter Jentzen; Renate Thienel; Alexandra Dittmann-Balcar; Stefan Bender; Philip B. Ward. Functional brain maps of Tower of London performance: a positron emission tomography and functional magnetic resonance imaging study. NeuroImage 20(2):1154-61, 2003. PMID: 14568484. DOI: 10.1016/S1053-8119(03)00338-0. FMRIDCID: . WOBIB: 144.
Empathic judgements also activated left anterior middle temporal and left inferior frontal gyri, while forgivability judgements activated posterior cingulate gyrusT. F. Farrow; Y. Zheng; I. D. Wilkinson; S. A. Spence; J. F. Deakin; N. Tarrier; P. D. Griffiths; P. W. Woodruff. Investigating the functional anatomy of empathy and forgiveness. NeuroReport 12(11):2433-2438, 2001. PMID: 11496124. FMRIDCID: . WOBIB: 147.
Multimodally responsive areas comprised a right-lateralized network including the temporoparietal junction, inferior frontal gyrus, insula and left cingulate and supplementary motor areasJ. Downar; A. P. Crawley; D. J. Mikulis; K. D. Davis. A multimodal cortical network for the detection of changes in the sensory environment. Nature Neuroscience 3(3):277-283, 2000. PMID: 10700261. DOI: 10.1038/72991. FMRIDCID: . WOBIB: 148.
This strategy identified an area of heteromodal cortex in the left superior temporal sulcus that exhibited significant supra-additive response enhancement to matched audio-visual inputs and a corresponding sub-additive response to mismatched inputsGemma A. Calvert; Ruth Campbell; Michael J. Brammer. Evidence from functional magnetic resonance imaging of crossmodal binding in the human heteromodal cortex. Current Biology 10(11):649-657, 2000. PMID: 10837246. FMRIDCID: . WOBIB: 154.
However, with ketamine, neural responses were demonstrated to neutral expressions in visual cortex, cerebellum and left posterior cingulate gyrusKathryn M. Abel; Matthew P. G. Allin; Katarzyna Kucharska-Pietura; Anthony S. David; Chris Andrew; Steven C. R. Williams; Michael J. Brammer; Mary L. Phillips. Ketamine alters neural processing of facial emotion recognition in healthy men: an fMRI study. NeuroReport 14(3):387-391, 2003. PMID: 12634489. DOI: 10.1097/01.wnr.0000058031.29600.31. FMRIDCID: . WOBIB: 155.
Results demonstrated that, relative to an emotionally Neutral state, both the Sad and the Happy states were associated with significant loci of activation, bilaterally, in the orbitofrontal cortex, and in the left medial prefrontal cortex, left ventrolateral prefrontal cortex, left anterior temporal pole, and right ponsMario Pelletier; Alain Bouthillier; Johanne Levesque; Serge Carrier; Claude Breault; Vincent Paquette; Boualem Mensour; Jean-Maxime Leroux; Gilles Beaudoin; Pierre Bourgouin; Mario Beauregard. Separate neural circuits for primary emotions? Brain activity during self-induced sadness and happiness in professional actors. NeuroReport 14(8):1111-1116, 2003. PMID: 12821792. DOI: 10.1097/01.wnr.0000075421.59944.69. FMRIDCID: . WOBIB: 157.
Acquisition was associated with activity in the left prefrontal cortex and the retrosplenial area, whereas retrieval was associated with activity in right prefrontal cortex and the precuneusTim Shallice; Paul Fletcher; Chris D. Frith; Paul Grasby; Richard S. J. Frackowiak; Raymond J. Dolan. Brain regions associated with acquisition and retrieval of verbal episodic memory. Nature 368(6472):633-635, 1994. PMID: 8145849. DOI: 10.1038/368633a0. FMRIDCID: . WOBIB: 159.
Threat-related words compared to neutral words activated left posterior cingulate gyrus in eight of 10 subjects with activation most prominent in the retrosplenial regionRichard J. Maddock; Michael H. Buonocore. Activation of left posterior cingulate gyrus by the auditory presentation of threat-related words: an fMRI study. Psychiatry Research 75(1):1-14, 1997. PMID: 9287369. FMRIDCID: . WOBIB: 165.
05) of normalized cerebral counts were located in the left sensorimotor cortex (MISI), right motor cortex, left thalamus, right insula, supplementary motor area (SMA), and bilaterally in the primary auditory cortex and the cerebellumMorten Blinkenberg; Christian Bonde; Søren Holm; Claus Svarer; Jimmy Andersen; Olaf B. Paulson; Ian Law. Rate dependence of regional cerebral activation during performance of a repetitive motor task: a PET study. Journal of Cerebral Blood Flow and Metabolism 16(5):794-803, 1996. PMID: 8784224. DOI: 10.1097/00004647-199609000-00004. FMRIDCID: . WOBIB: 166.
Both groups showed threat-related activation in the left posterior cingulate and left middle frontal cortices, but the activation was significantly greater in panic patientsRichard J. Maddock; Michael H. Buonocore; Shawn J. Kile; Amy S. Garrett. Brain regions showing increased activation by threat-related words in panic disorder. NeuroReport 14(3):325-328, 2003. PMID: 12634477. FMRIDCID: . WOBIB: 168.
During phonological tasks, brain activation in males is lateralized to the left inferior frontal gyrus regions; in females the pattern of activation is very different, engaging more diffuse neural systems that involve both the left and right inferior frontal gyrusBennett A. Shaywitz; Sally E. Shaywitz; Kenneth R. Pugh; R. Todd Constable; Pawl Skudlawski; Robert K. Fulbright; Richard A. Bronen; Jack M. Fletcher; Donald P. Shankwiler; Leonard Katz; John C. Gore. Sex differences in the functional organization of the brain for language. Nature 373(6515):607-609, 1995. PMID: 7854416. DOI: 10.1038/373607a0. FMRIDCID: . WOBIB: 169.
Both story conditions, when compared to the unlinked sentences, showed significantly increased regional cerebral blood flow in the following regions: the temporal poles bilaterally, the left superior temporal gyrus and the posterior cingulate cortexPaul C. Fletcher; F Happe; Uta Frith; S. C. Baker; Raymond J. Dolan; Richard S. J. Frackowiak; Chris D. Frith. Other minds in the brain: a functional imaging study of "theory of mind" in story comprehension. Cognition 57(2):109-128, 1995. PMID: 8556839. DOI: 10.1016/0010-0277(95)00692-R. FMRIDCID: . WOBIB: 170.
Comparison of the "theory of mind" stories with "physical" stories revealed a specific pattern of activation associated with mental state attribution: it was only this task which produced activation in the medial frontal gyrus on the left (Brodmann's area 8)Paul C. Fletcher; F Happe; Uta Frith; S. C. Baker; Raymond J. Dolan; Richard S. J. Frackowiak; Chris D. Frith. Other minds in the brain: a functional imaging study of "theory of mind" in story comprehension. Cognition 57(2):109-128, 1995. PMID: 8556839. DOI: 10.1016/0010-0277(95)00692-R. FMRIDCID: . WOBIB: 170.
The left inferior frontal and left superior temporal regions (Broca's and Wernicke's areas), along with the right inferior frontal cortex, demonstrated a convex response to speech compression; their activity increased as compression increased, but then decreased when speech became incomprehensibleRussell A. Poldrack; Elise Temple; Athanassios Protopapas; Srikantan Nagarajan; Paula Tallal; Michael Merzenich; John D. E. Gabrieli. Relations Between the Neural Bases of Dynamic Auditory Processing and Phonological Processing: Evidence from fMRI. Journal of Cognitive Neuroscience 13(5):687-697, 2001. PMID: 11506664. FMRIDCID: 2-2001-111KR. WOBIB: 171.
Rhyme judgments engaged two left inferior frontal gyrus regions (pars triangularis and pars opercularis), of which only the pars triangularis region exhibited significant compression-related activityRussell A. Poldrack; Elise Temple; Athanassios Protopapas; Srikantan Nagarajan; Paula Tallal; Michael Merzenich; John D. E. Gabrieli. Relations Between the Neural Bases of Dynamic Auditory Processing and Phonological Processing: Evidence from fMRI. Journal of Cognitive Neuroscience 13(5):687-697, 2001. PMID: 11506664. FMRIDCID: 2-2001-111KR. WOBIB: 171.
These results directly demonstrate that a subset of the left inferior frontal regions involved in phonological processing is also sensitive to transient acoustic features within the range of comprehensible speechRussell A. Poldrack; Elise Temple; Athanassios Protopapas; Srikantan Nagarajan; Paula Tallal; Michael Merzenich; John D. E. Gabrieli. Relations Between the Neural Bases of Dynamic Auditory Processing and Phonological Processing: Evidence from fMRI. Journal of Cognitive Neuroscience 13(5):687-697, 2001. PMID: 11506664. FMRIDCID: 2-2001-111KR. WOBIB: 171.
Results revealed that the left middle frontal cortex contributes to syllabic processing, whereas the left inferior prefrontal gyri contributes to phonemic processingWai Ting Soik; Zhen Jin; Paul Fletcher; Li Hai Tan. Distinct brain regions associated with syllable and phoneme. Human Brain Mapping 18(3):201-207, 2003. PMID: 12599278. DOI: 10.1002/hbm.10094. FMRIDCID: . WOBIB: 172.
Areas showing consistent decreases during active tasks included posterior cingulate/precuneous (Brodmann area, BA 31/7), left (Bas 40 and 39/19) and right (BA 40) inferior parietal cortex, left dorsolateral frontal cortex (BA 8), left lateral inferior frontal cortex (BA 10/47), left inferior temporal gyrus (BA 20), a strip of medial frontal regions running along a dorsal-ventral axis (Bas 8, 9, 10, and 32), and the right amygdalaGordon L. Shulman; Julie A. Fiez; Maurizio Corbetta; Randy L. Buckner; Francis M. Miezin; Marcus E. Raichle; Steven E. Petersen. Common Blood Flow Changes across Visual Tasks: II. Decreases in Cerebral Cortex. Journal of Cognitive Neuroscience 9(5):648-663, 1997. FMRIDCID: . WOBIB: 173.
Decreases were more pronounced in the posterior cingulate/precuneous (Bas 31/7) and right inferior parietal cortex (BA 40) during language-related tasks and more pronounced in left inferior frontal cortex (BA 10/47) during nonlanguage tasksGordon L. Shulman; Julie A. Fiez; Maurizio Corbetta; Randy L. Buckner; Francis M. Miezin; Marcus E. Raichle; Steven E. Petersen. Common Blood Flow Changes across Visual Tasks: II. Decreases in Cerebral Cortex. Journal of Cognitive Neuroscience 9(5):648-663, 1997. FMRIDCID: . WOBIB: 173.
Blood flow decreases did not generally show significant differences across the active task states within an experiment, but a verb-generation task produced larger decreases than a read task in right and left inferior parietal lobe (BA 40) and the posterior cingulate/precuneous (BA 31/7), while the read task produced larger decreases in left lateral inferior frontal cortex (BA 10/47)Gordon L. Shulman; Julie A. Fiez; Maurizio Corbetta; Randy L. Buckner; Francis M. Miezin; Marcus E. Raichle; Steven E. Petersen. Common Blood Flow Changes across Visual Tasks: II. Decreases in Cerebral Cortex. Journal of Cognitive Neuroscience 9(5):648-663, 1997. FMRIDCID: . WOBIB: 173.
The left posterior middle temporal region, anterior to V5/MT, has been shown to be responsive both to images with implied motion, to simulated motion, and to motion verbsMikkel Wallentin; Torben Ellegaard Lund; Svend Østergaard; Leif Østergaard; Andreas Roepstorff. Motion verb sentences activate left posterior middle temporal cortex despite static context. NeuroReport 16(5):649-652, 2005. PMID: 15812326. FMRIDCID: . WOBIB: 175.
In this study, we investigated whether sentence context alters the response of the left posterior middle temporal regionMikkel Wallentin; Torben Ellegaard Lund; Svend Østergaard; Leif Østergaard; Andreas Roepstorff. Motion verb sentences activate left posterior middle temporal cortex despite static context. NeuroReport 16(5):649-652, 2005. PMID: 15812326. FMRIDCID: . WOBIB: 175.
However, this context yields no less activation in the left posterior middle temporal region than sentences in which the motion can be applied to the subject nounMikkel Wallentin; Torben Ellegaard Lund; Svend Østergaard; Leif Østergaard; Andreas Roepstorff. Motion verb sentences activate left posterior middle temporal cortex despite static context. NeuroReport 16(5):649-652, 2005. PMID: 15812326. FMRIDCID: . WOBIB: 175.
We speculate that the left posterior middle temporal region activity in fictive motion sentences reflects the fact that the hearer applies motion to the depicted scenario by scanning it egocentricallyMikkel Wallentin; Torben Ellegaard Lund; Svend Østergaard; Leif Østergaard; Andreas Roepstorff. Motion verb sentences activate left posterior middle temporal cortex despite static context. NeuroReport 16(5):649-652, 2005. PMID: 15812326. FMRIDCID: . WOBIB: 175.
Stroop interference was found to activate the left anterior cingulate cortex, the supplementary motor cortex, thalamus, and the cerebellumBarbara Ravnkilde; Poul Videbech; Raben Rosenberg; Albert Gjedde; Anders Gade. Putative Tests of Frontal Lobe Function: A PET-Study of Brain Activation During Stroop's Test and Verbal Fluency. Journal of Clinical and Experimental Neuropsychology 24(4):534-547, 2002. PMID: 12187466. DOI: 10.1076/jcen.24.4.534.1033. FMRIDCID: . WOBIB: 176.
Verbal Fluency activated the left inferior frontal cortex and the left dorsolateral prefrontal cortex, the supplementary motor cortex, the anterior cingulate cortex and the cerebellumBarbara Ravnkilde; Poul Videbech; Raben Rosenberg; Albert Gjedde; Anders Gade. Putative Tests of Frontal Lobe Function: A PET-Study of Brain Activation During Stroop's Test and Verbal Fluency. Journal of Clinical and Experimental Neuropsychology 24(4):534-547, 2002. PMID: 12187466. DOI: 10.1076/jcen.24.4.534.1033. FMRIDCID: . WOBIB: 176.
Neuroimaging and neuropsychological studies have implicated left inferior prefrontal cortex (LIPC) in both semantic and phonological processingRussell A. Poldrack; Anthony D. Wagner; Matthew W. Prull; John E. Desmond; Gary H. Glover; John D. E. Gabrieli. Functional Specialization for Sematic and Phonological Processing in the Left Inferior Prefrontal Cortex. NeuroImage 10(1):15-35, 1999. PMID: 10385578. DOI: 10.10061/nimg.1999.0441. FMRIDCID: . WOBIB: 178.
Phonological processing of words and pseudowords in a syllable-counting task resulted in activation of the dorsal aspect of the left inferior frontal gyrus near the inferior frontal sulcus (BA 44/45) compared to a perceptual control task, with greater activation for nonwords compared to wordsRussell A. Poldrack; Anthony D. Wagner; Matthew W. Prull; John E. Desmond; Gary H. Glover; John D. E. Gabrieli. Functional Specialization for Sematic and Phonological Processing in the Left Inferior Prefrontal Cortex. NeuroImage 10(1):15-35, 1999. PMID: 10385578. DOI: 10.10061/nimg.1999.0441. FMRIDCID: . WOBIB: 178.
In a direct comparison of semantic and phonological tasks, semantic processing preferentially activated the ventral aspect of the left inferior frontal gyrus (BA 47/45)Russell A. Poldrack; Anthony D. Wagner; Matthew W. Prull; John E. Desmond; Gary H. Glover; John D. E. Gabrieli. Functional Specialization for Sematic and Phonological Processing in the Left Inferior Prefrontal Cortex. NeuroImage 10(1):15-35, 1999. PMID: 10385578. DOI: 10.10061/nimg.1999.0441. FMRIDCID: . WOBIB: 178.
A review of the literature demonstrated a similar distinction between left prefrontal regions involved in semantic processing and phonological/lexical processingRussell A. Poldrack; Anthony D. Wagner; Matthew W. Prull; John E. Desmond; Gary H. Glover; John D. E. Gabrieli. Functional Specialization for Sematic and Phonological Processing in the Left Inferior Prefrontal Cortex. NeuroImage 10(1):15-35, 1999. PMID: 10385578. DOI: 10.10061/nimg.1999.0441. FMRIDCID: . WOBIB: 178.
The results suggest that a distinct region in the left inferior frontal cortex is involved in semantic processing, whereas other regions may subserve phonological processes engaged during both semantic and phonological tasksRussell A. Poldrack; Anthony D. Wagner; Matthew W. Prull; John E. Desmond; Gary H. Glover; John D. E. Gabrieli. Functional Specialization for Sematic and Phonological Processing in the Left Inferior Prefrontal Cortex. NeuroImage 10(1):15-35, 1999. PMID: 10385578. DOI: 10.10061/nimg.1999.0441. FMRIDCID: . WOBIB: 178.
The results showed that episodic retrieval task was associated with increased blood flow in right prefrontal and posterior cingulate cortex, as well as with a sustained right-frontopolar-positive ERP, but that the semantic retrieval task was associated with left frontal and temporal lobe activityEmrah Düzel; Roberto Cabeza; Terence W. Picton; Andrew P. Yonelinas; Henning Scheich; Hans-Jochen Heinze; Endel Tulving. Task-related and item-related brain processes of memory retrieval. Proceedings of the National Academy of Science of the United States of America 96(4):1794-1799, 1999. PMID: 9990104. FMRIDCID: . WOBIB: 181.
Retrieval of old items was associated with increased blood flow in the left medial temporal lobe and with a brief late positive ERP componentEmrah Düzel; Roberto Cabeza; Terence W. Picton; Andrew P. Yonelinas; Henning Scheich; Hans-Jochen Heinze; Endel Tulving. Task-related and item-related brain processes of memory retrieval. Proceedings of the National Academy of Science of the United States of America 96(4):1794-1799, 1999. PMID: 9990104. FMRIDCID: . WOBIB: 181.
Compared withvisual detectionthere was activation of primary sensorimotor cortex, ventrolateral precentral gyrus, inferior frontal gyrus in the opercular region, supramarginal gyrus, and middle occipital gyrus, all these sites in the hemisphere (left) contralateral to the moving limb, and cerebellar vermis, during bothimmediate pointingandpointing to the previousF. Lacquaniti; Daniela Perani; E. Guigon; V. Bettinardi; M. Carrozzo; F. Grassi; Yves Rossetti; F. Fazio. Visuomotor Transformations for Reaching to Memorized Targets: A PET study. NeuroImage 5(2):129-146, 1997. PMID: 9345543. DOI: 10.1006.nimg.1996.0254. FMRIDCID: . WOBIB: 182.
Duringimmediate pointingthere was additional activation of left inferior parietal lobule close to the intraparietal sulcus, and when compared withpointing to the previous,dorsolateral prefrontal cortex bilaterallyF. Lacquaniti; Daniela Perani; E. Guigon; V. Bettinardi; M. Carrozzo; F. Grassi; Yves Rossetti; F. Fazio. Visuomotor Transformations for Reaching to Memorized Targets: A PET study. NeuroImage 5(2):129-146, 1997. PMID: 9345543. DOI: 10.1006.nimg.1996.0254. FMRIDCID: . WOBIB: 182.
Duringpointing to the previous,instead, there was additional activation of supplementary motor cortex, anterior and midcingulate, and inferior occipital gyrus in the left hemisphere; superior parietal lobule, supramarginal gyrus, and posterior hippocampus in the right hemisphere; lingual gyri and cerebellar hemispheres bilaterally; anterior thalamus; and pulvinarF. Lacquaniti; Daniela Perani; E. Guigon; V. Bettinardi; M. Carrozzo; F. Grassi; Yves Rossetti; F. Fazio. Visuomotor Transformations for Reaching to Memorized Targets: A PET study. NeuroImage 5(2):129-146, 1997. PMID: 9345543. DOI: 10.1006.nimg.1996.0254. FMRIDCID: . WOBIB: 182.
The rate of articulation was positively correlated with activation in the left superior temporal (BA 22) and supramarginal (BA 39/40) gyriTilo T. J. Kircher; Michael J. Brammer; S. C. R. Williams; Philip K. McGuire. Lexical retrieval during fluent speech production: an fMRI study. NeuroReport 11(18):4093-4096, 2000. PMID: 11192634. FMRIDCID: . WOBIB: 183.
Lexical retrieval during continuous language production engages areas in the left temporal and inferior parietal cortexTilo T. J. Kircher; Michael J. Brammer; S. C. R. Williams; Philip K. McGuire. Lexical retrieval during fluent speech production: an fMRI study. NeuroReport 11(18):4093-4096, 2000. PMID: 11192634. FMRIDCID: . WOBIB: 183.
This pattern of activation differs from that evident during the generation of single words (verbal fluency), which is more associated with left prefrontal activationTilo T. J. Kircher; Michael J. Brammer; S. C. R. Williams; Philip K. McGuire. Lexical retrieval during fluent speech production: an fMRI study. NeuroReport 11(18):4093-4096, 2000. PMID: 11192634. FMRIDCID: . WOBIB: 183.
In comparison with resting state, both tasks activated the anterior triangular portion of the left inferior frontal gyrus (IFG or F3, for third frontal gyrus) and the left thalamusEraldo Paulesu; Ben Goldacre; Paola Scifo; Stefano F. Cappa; Maria Carla Gilardi; Isabella Castiglioni; Daniela Perani; Frruccio Fazio. Functional heterogeneity of left inferior frontal cortex as revealed by fMRI. NeuroReport 8(8):2011-2017, 1997. PMID: 9223094. FMRIDCID: . WOBIB: 185.
There were also areas activated in one task but not in the other: the posterior opercular portion of the left IFG for phonemic fluency, and the left retrosplenial region for semantic fluencyEraldo Paulesu; Ben Goldacre; Paola Scifo; Stefano F. Cappa; Maria Carla Gilardi; Isabella Castiglioni; Daniela Perani; Frruccio Fazio. Functional heterogeneity of left inferior frontal cortex as revealed by fMRI. NeuroReport 8(8):2011-2017, 1997. PMID: 9223094. FMRIDCID: . WOBIB: 185.
Our findings concur with normal psychophysical data and neuropsychological observations to suggest the recruitment of two overlapping but dissociable systems for the two tasks, and demonstrate functional heterogeneity within the left IFG (Broca's area), where the opercular portion is responsible for obtaining access to words through a phonemic/articulatory routeEraldo Paulesu; Ben Goldacre; Paola Scifo; Stefano F. Cappa; Maria Carla Gilardi; Isabella Castiglioni; Daniela Perani; Frruccio Fazio. Functional heterogeneity of left inferior frontal cortex as revealed by fMRI. NeuroReport 8(8):2011-2017, 1997. PMID: 9223094. FMRIDCID: . WOBIB: 185.
Increased activity in the anterior cingulate cortex (ACC), the superior frontal gyrus (SFG), and the left premotor, motor, and anterior parietal cortex was specifically associated with deceptive responsesDaniel D. Langleben; L. Schroeder; J. A. Maldjian; R. C. Gur; S. McDonald; J. D. Ragland; C. P. O'Brien; A. R. Childress. Brain Activity during Simulated Deception: An Event-Related Functional Magnetic Resonance Study. NeuroImage 15(3):727-732, 2002. PMID: 11848716. DOI: 10.1006/nimg.2001.1003. FMRIDCID: . WOBIB: 186.

Text count

Bib -> Asymmetry | Author | ICA | NMF | Novelty | Statistics | SVD | Title | WOBIB ]
Roi -> Alphabetic | Hammers | Tzourio-Mazoyer | Svarer | Top | Functional areas | Brodmann areas ]
[ Brede Database ]
Automatically constructed by Brede Toolbox through brede_roi_roi2html, 2006-10-05T15:45:26